Skip to main content
Log in

Empirical Model of Radar Scattering in the 3-cm Wavelength Range on the Sea at Wide Incidence Angles

  • Published:
Radiophysics and Quantum Electronics Aims and scope

We present the results of radar investigation of scattering of electromagnetic radiation in the 3-cm wavelength range by the sea surface in the case of horizontal polarization of the transmitted and received signals and wide incidence angles. Full-scale measurements were performed on the Oceanographic Stationary Platform in the Black Sea in the range of incidence angles from 84.0° to 87.5° at wind velocities from 4 to 19 m/s. Only the conditions of wind waves with no swelling were considered. It is shown that the specific scattering cross section is almost invariant, when the incidence angle varies, but has a strong wind dependence. It can be described by the power function with the exponents 2.8 and 3.8 at the upwind and downwind probing directions, respectively. At weak and moderate winds, the azimuthal dependence of the specific scattering cross section is characterized by the unimodal function with one maximum in the upwind direction and a minimum in the downwind direction. At wind velocities exceeding 10 m/s, the azimuthal dependence of the scattering cross section becomes bimodal and has a minimum at the azimuth being close to the direction perpendicular to the wind (crosswind). The measured values of the specific scattering cross section are approximated by a finite Fourier series with respect to the azimuth, in which the expansion coefficients depend on the wind velocity and inclination angle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Dankert and W. Rosenthal, J. Geophys. Res. Oceans, 109, No.C4, C04016 (2004).

    Article  ADS  Google Scholar 

  2. J. C. Nieto-Borge, K. Hessner, P. Jarabo-Amores, and D. de La Mata-Moya, IET Radar, Sonar and Navigation, 2, No. 1, 35 (2008).

    Article  Google Scholar 

  3. C. Senet, J. Seemann, and F. Ziemer, IEEE Trans. Geosci. Remote Sens., 39, No. 3, 492 (2001).

    Article  ADS  Google Scholar 

  4. B. Lund, H. C. Graber, H. Tamura, et al., J. Geophys. Res. Oceans, 120, 8466 (2015).

    Article  ADS  Google Scholar 

  5. D. V. Ivonin, P. V. Chernyshov, S. B. Kuklev, and S. A. Myslenkov, Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli iz Kosmosa, 13, No. 2, 53 (2016).

    Article  Google Scholar 

  6. R. Vicen-Bueno, J. Horstmann, E. Terril, et al., J. Atmospheric and Oceanic Technology, 30, No. 1, 127 (2013).

    Article  ADS  Google Scholar 

  7. Z. Chen, Y. He, B. Zhang, and Z. Qiu, Ocean Engineering, 96, 79 (2015).

    Article  Google Scholar 

  8. M. P. Gus’kov, Yu. M. Zhidko, V.V. Rodin, et al., Radiophys. Quantum Electron., 31, No. 11, 943 (1988).

    Article  ADS  Google Scholar 

  9. M. P. Gus’kov, Yu. M. Zhidko, G. K. Ivanova, et al., Radiophys. Quantum Electron., 33, No. 9, 734 (1990).

    Article  ADS  Google Scholar 

  10. A. I. Kalmykov and V. V. Pustovoytenko, J. Geophys. Res., 81, 1960 (1976).

    Article  ADS  Google Scholar 

  11. D. B. Trizna and D. J. Carlson, IEEE Trans. Geosci. Remote Sens., 34, No. 3, 747 (1996).

    Article  ADS  Google Scholar 

  12. P. H. Y. Lee, J. D. Barter, K. L. Beach, et al., J. Geophys. Res., 100, No.C2, 2591 (1995).

    Article  ADS  Google Scholar 

  13. Y. Liu, S. J. Frasier, and R. E. McIntosh, IEEE Trans. Anten. Propag., 46, No. 1, 27 (1998).

    Article  ADS  Google Scholar 

  14. D. B. Trizna, J. P. Hansen, P. Hwang, and J. Wu, J. Geophys. Res. Oceans, 96, No. C7, 12529 (1991).

    Article  ADS  Google Scholar 

  15. P. H. Y. Lee, J. D. Barter, K. L. Beach, et al., IEEE Trans. Anten. Propag., 46, No. 1, 14 (1998).

    Article  ADS  Google Scholar 

  16. J. Fuchs, D. Regas, T. Waseda, et al., IEEE Trans. Geosci. Remote Sens., 37, No. 5, 2442 (1999).

    Article  ADS  Google Scholar 

  17. M. A. Sletten, J. C. West, X. Liu, and J. H. Duncan, Radio Science, 38, No. 6, 1110 (2003).

    Article  ADS  Google Scholar 

  18. A. V. Érmoshkin, V. V. Bakhanov, and N. A. Bogatov, Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli iz Kosmosa, 12, 4, 51 (2015).

    Google Scholar 

  19. D. S. Kwoh and B. M. Lake, IEEE J. Oceanic Eng., 9, No. 5, 291 (1984).

    Article  ADS  Google Scholar 

  20. W. K. Melville, M. R. Loewen, F. C. Felizardo, et al., Nature, 336, 54 (1988).

    Article  ADS  Google Scholar 

  21. Yu. A. Kravtsov, M. I. Mityagina, and A. N. Churyumov, Radiophys. Quantum Electron., 42, No. 3, 216 (1999).

    Article  ADS  Google Scholar 

  22. D. B. Trizna, IEEE Trans. Geosci. Remote Sens., 35, No. 5, 1232 (1997).

    Article  ADS  Google Scholar 

  23. A. N. Churyumov and Y. A. Kravtsov, Waves in Random Media, 10, No. 1, 1 (2000).

    Article  ADS  MathSciNet  Google Scholar 

  24. D. R. Lyzenga and E. A. Ericson, IEEE Trans. Geosci. Remote Sens., 36, No. 2, 636 (1998).

    Article  ADS  Google Scholar 

  25. W. J. Plant, Waves in Random Media, 13, 339 (2003).

    Article  ADS  Google Scholar 

  26. W. J. Plant, W. C. Keller, K. Hayes, and G. Chatham, J. Geophys. Res., 115, C09032 (2010).

    ADS  Google Scholar 

  27. V. V. Malinovsky and A. D. Rozenberg, Phys. Oceanography, 4, 50 (1990).

    Google Scholar 

  28. H. Dankert, J. Horstmann, and W. Rosenthal, J. Geophys. Res., 108, No.C11, 3352 (2003).

    Article  ADS  Google Scholar 

  29. B. Lund, H. C. Graber, and R. Romeiser, IEEE Trans. Geosci. Remote Sens., 50, No. 10, 3800 (2012).

    Article  ADS  Google Scholar 

  30. H. Hersbach, J. Atmos. Ocean. Technol., 27, 721 (2010).

    Article  ADS  Google Scholar 

  31. F. J. Wentz and D. K. Smith, J. Geophys. Res., 104, No.C5, 11499 (1999).

    Article  ADS  Google Scholar 

  32. V. V. Dotsenkov, D. M. Nosov, M. V.Osipov, et al., Proc. Intern. Crimean Conf. “Microwave Equipment and Telecommunication Technologies”, Sept. 13–17, 2000, Sevastopol, p. 1253.

  33. C. W. Fairall, E. F. Bradley, J. E. Hare, et al., J. Clim., 16, 571 (2003).

    Article  ADS  Google Scholar 

  34. M. J. Smith, E. M. Poulter, and J. A. Mcgregor, J. Geophys. Res., 101, No.C6, 14269 (1996).

    Article  ADS  Google Scholar 

  35. P. A. Hwang, M. A. Sletten, and J. V. Toporkov, J. Geophys. Res., 113, No.C2, C02003 (2008).

    ADS  Google Scholar 

  36. F. J. Wentz, S. Peteherych, and L. A. Thomas, J. Geophys. Res., 89, No.C3, 3689 (1984).

    Article  ADS  Google Scholar 

  37. O. M. Phillips, J. Phys. Ocean, 18, No. 8, 1065 (1988).

    Article  ADS  Google Scholar 

  38. V. N. Kudryavtsev, D. Hauser, G. Caudal, and B. A. Chapron, J. Geophys. Res., 108, No.C3, 8054 (2003).

    Article  ADS  Google Scholar 

  39. A. T. Jessup, W. K. Melville, and W. C. Keller, J. Geophys. Res., 96, No.C11, 20561 (1991).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Malinovsky.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 61, No. 2, pp. 110–121, February 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malinovsky, V.V., Korinenko, A.E. & Kudryavtsev, V.N. Empirical Model of Radar Scattering in the 3-cm Wavelength Range on the Sea at Wide Incidence Angles. Radiophys Quantum El 61, 98–108 (2018). https://doi.org/10.1007/s11141-018-9874-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-018-9874-7

Navigation