Skip to main content
Log in

Near-Field Resonance Microwave Tomography and Holography

  • Published:
Radiophysics and Quantum Electronics Aims and scope

We develop the methods of electromagnetic computer near-field microwave tomography of distributed subsurface inhomogeneities of complex dielectric permittivity and of holography (shape retrieval) of internally homogeneous subsurface objects. The methods are based on the solution of the near-field inverse scattering problem from measurements of the resonance-parameter variations of microwave probes above the medium surface. The capabilities of the proposed diagnostic technique are demonstrated in the numerical simulation for sensors with a cylindrical capacitor as a probe element, the edge capacitance of which is sensitive to subsurface inhomogeneities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. K. P. Gaikovich, Phys. Rev. Lett., 98, No. 18, 183902 (2007).

    Article  ADS  Google Scholar 

  2. K.P. Gaikovich and P.K. Gaikovich, Inverse Problems, 26, No. 12, 125013 (2010).

    Article  ADS  MathSciNet  Google Scholar 

  3. K.P. Gaikovich, P.K. Gaikovich, Ye. S. Maksimovitch, and V. A. Badeev, Phys. Rev. Lett., 108, No. 16, 163902 (2012).

    Article  ADS  Google Scholar 

  4. K.P. Gaikovich, P.K. Gaikovich, Ye. S. Maksimovitch, and V.A. Badeev, IEEE J. Selected Topics Appl. Earth Observations Remote Sensing, 9, No. 1, 74 (2016).

    Article  Google Scholar 

  5. P. S. Carney, V.A. Markel, and J.C. Schotland, Phys. Rev. Lett., 86, No. 26, 5874 (2001).

    Article  ADS  Google Scholar 

  6. K.P. Gaikovich, Inverse Problems in Physical Diagnostics, Nova Science Publishers Inc., New York (2004).

    Google Scholar 

  7. V. V. Razevig, S. I. Ivashov, A. P. Sheyko, et al., Prog. Electromagn. Res. Lett., 1, 173 (2008).

    Article  Google Scholar 

  8. D. V. Yanin, A. G. Galka, A. V. Kostrov, et al., Radiophys. Quantum Electron., 57, No. 1, 31 (2014).

    Article  ADS  Google Scholar 

  9. D. V. Yanin, A. G. Galka, A. I. Smirnov, et al., Usp. Prikl. Fiz., 2, No. 6, 555 (2014).

    Google Scholar 

  10. A. G. Galka, D. V. Yanin, A. I. Smirnov, et al., in: Proc. 9th Int. Sci. Pract. Conf. “High Technologies and Fundamental and Applied Studies in Physiology and Medicine,” November 24–26, 2015, St. Petersburg, Russia [in Russian], p. 81.

  11. D. V. Yanin, A. G. Galka, A. I. Smirnov, et al., Zh. Radioélektron., No. 1, 1 (2015).

  12. D. V. Yanin, A. G. Galka, A. I. Smirnov, and A.V. Kostrov, Zh. Radioélektron., No. 1, 1 (2016).

  13. A. I. Smirnov, A. G. Galka, A. V. Kostrov, and A.V. Strikovskiy, in: Proc. Int. Conf. on Antenna Theory and Techniques, September 16–17, 2013, Odessa, Ukraine, p. 529.

  14. D. V. Yanin, A. V. Kostrov, A. I. Smirnov, et al., Tech. Phys., 57, No. 4, 468 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. P. Gaikovich.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 60, No. 9, pp. 820–838, September 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaikovich, K.P., Smirnov, A.I. & Yanin, D.V. Near-Field Resonance Microwave Tomography and Holography. Radiophys Quantum El 60, 733–749 (2018). https://doi.org/10.1007/s11141-018-9842-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-018-9842-2

Navigation