Skip to main content
Log in

Variations in Microwave Radiation of the Nighttime Mesospheric Ozone over Moscow

  • Published:
Radiophysics and Quantum Electronics Aims and scope

We consider the instrumentation and methods for the nighttime ground-based measurements of the atmospheric-ozone emission line at a frequency of 142.175 GHz. The ozone-radiation spectra were measured in Moscow in the 2014–2016 cold months with a time resolution of about 2 min. We performed a frequency-time analysis of variations in the differences of the brightness temperatures of the ozone-emission line for the frequency offsets 0–50, 50–150, and 150–250 kHz from the line center. Variations with periods from 6 min to 3 h, which can be related to the wave propagation in the mesosphere and the lower thermosphere, were revealed using the data windows with halfwidths of 10–60 min.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Allen, J. I. Lunine, and Y. L. Yung, J. Geophys. Res., 89, No. D3, 4841 (1984).

    Article  ADS  Google Scholar 

  2. A. K. Smith and D. R. Marsh, J. Geophys. Res., 110, No. D23, D23305 (2005).

    Article  ADS  Google Scholar 

  3. G. Vaughan, Nature, 296, No. 5853, 133 (1982).

    Article  ADS  Google Scholar 

  4. K. U. Grossmann, Adv. Space Res., 7, No. 9, 95 (1987).

    Article  ADS  Google Scholar 

  5. C. Bruhl, S. R. Drayson, J. M. Russell, et al., J. Geophys. Res., 101, No. D6, 10217 (1996).

    Article  ADS  Google Scholar 

  6. R. M. Bevilacqua, D. L. Kriebel, T. A. Pauls, et al., Geophys. Res. Lett., 23, No. 17, 2317 (1996).

    Article  ADS  Google Scholar 

  7. V. S. Kostsov and Yu. M. Timofeev, Izvestiya, Atmos. Oceanic Phys., 41, No. 2, 178 (2005).

    Google Scholar 

  8. M. Kaufmann, O. A. Gusev, K. U. Grossmann, et al., J. Geophys. Res., 108, No. D9, 4272 (2003).

    Article  Google Scholar 

  9. E. Kyrola, J. Tamminen, G. W. Leppelmeier, et al., J. Geophys. Res., 111, No. D24, D24306 (2006).

    Article  ADS  Google Scholar 

  10. J. W. Waters, L. Froidevaux, R. S. Harwood, et al., IEEE Trans. Geosci. Rem. Sens., 44, No. 5, 1075 (2006).

    Article  ADS  Google Scholar 

  11. K. Imai, N. Manago, C. Mitsuda, et al., J. Geophys. Res. Atmos., 118, No. 11, 5750 (2013).

    Article  ADS  Google Scholar 

  12. S. V. Solomonov, E. P. Kropotkina, A. N. Lukin, et al., Izv. Ross. Akad. Nauk Fiz. Atm. Okeana, 29, No. 4, 525 (1993).

    ADS  Google Scholar 

  13. W. J. Wilson and P. R. Schwartz, J. Geophys. Res., 86, No.C8, 7385 (1981).

    Article  ADS  Google Scholar 

  14. E. Lobsiger and K. F. Kunzi, J. Atmos. Terr. Phys., 48, Nos. 11–12, 1153 (1986).

    Article  ADS  Google Scholar 

  15. W. C. Zommerfelds, K. F.Kunzi, M. E. Summers, et al., J. Geophys. Res., 94, No. D10, 12819 (1989).

    Article  ADS  Google Scholar 

  16. S. V. Solomonov, E. P. Kropotkina, and A. I. Semenov, Kratkie Soobshch. Fiz., No. 10, 31 (2001).

  17. A. N. Ignat’ev, Radiometry of Atmospheric Ozone and Dichloroxide on Millimeter Waves [in Russian], Cand. Sci. (Phys.-Math.) Thesis, Moscow State University, Moscow (2006).

  18. A. E. E. Rogers, M. Lekberg, and P. Pratar, J. Atmos. Ocean. Technol., 26, No. 10, 2192 (2009).

    Article  ADS  Google Scholar 

  19. G. Cevolani and G. Pupillo, Ann. Geophys., 46, No. 2, 247 (2003).

    Google Scholar 

  20. V. F. Sofieva, P. T. Verronen, E. Kyrölä, and S. Hassinen, Proc. XX Quadrennial Ozone Symp., Kos, Greece, June 1–8, 2004, p. 438.

  21. D. Marsh, A. Smith, G. Brasseur, et al., Geophys. Res. Lett., 28, No. 24, 4531 (2001).

    Article  ADS  Google Scholar 

  22. C. O.Hines, Canad. J. Phys., 38, No. 11, 1441 (1960).

    Article  ADS  Google Scholar 

  23. E. E. Gossard and W. H. Hooke, Waves in the Atmosphere, Elsevier Science Ltd, New York (1975).

    Google Scholar 

  24. G. I. Grigor’ev, Radiophys. Quantum Electron., 42, No. 1, 1 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  25. A. N. Oleynikov, Ch. Jacobi, and D.M. Sosnovchik, Annales Geophysicae, 23, No. 11, 3431 (2005).

    Article  ADS  Google Scholar 

  26. V. F. Pushin and L. F. Chernogor, Radiofiz. Radioastron., 17, No. 4, 333 (2012).

    Google Scholar 

  27. N. M. Gavrilov and S. P. Kshevetsii, Izvestiya, Atmos. Oceanic Phys., 50, No. 1, 66 (2014).

    Article  ADS  Google Scholar 

  28. S. B. Rozanov, A. S. Zavgorodniy, S. V. Logvinenko, et al., Radiophys. Quantum Electron., 54, Nos. 8–9, 638 (2012).

    Article  ADS  Google Scholar 

  29. S. B. Rozanov, S. V. Solomonov, E. P. Kropotkina, et al., in: Proc. VIIth All-Russia Sci.-Techn. Conf. “Radar and Radio Communication,” Moscow, November 25–27, 2013, IRE RAS, Moscow (2013), p. 98.

  30. M. A. Janssen, Ed., Atmospheric Remote Sensing by Microwave Radiometry, Wiley, New York (1993).

    Google Scholar 

  31. S. V. Solomonov, A. N. Ignat’ev, E. P. Kropotkina, et al., Instrum. Exp. Tech., No. 2, 280 (2009).

  32. G. G. Smirnov, Stark Broadening of Recombination Radio Lines [in Russian], Cand. Sci. (Phys.-Math.) Thesis, P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow (1985).

  33. http://voshod-solnca.ru/

  34. S. V. Solomonov, K. P. Gaikovich, E .P. Kropotkina, et al., Radiophys. Quantum Electron., 54, No. 2, 102 (2011).

    Article  ADS  Google Scholar 

  35. A. B. Sergienko, Digital Processing of Signals [in Russian], Piter, Saint-Petersburg (2006).

    Google Scholar 

  36. V. P. Diyakonov, Wavelets. From Theory to Practice [in Russian], Solon-R, Moscow (2002).

    Google Scholar 

  37. L. F. Chernogor, Geomagn. Aeron., 48, No. 5, 652 (2008).

    Article  ADS  Google Scholar 

  38. J. D. Scargle, Astrophys. J. Pt. 1, 263, No. 2, 835 (1982).

  39. N. R. Lomb, Astrophys. Space Sci., 39, No. 2, 447 (1976).

    Article  ADS  Google Scholar 

  40. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipies: the Art of Scientific Computing. 3rd Edition, Cambridge University Press, Cambridge (2007).

    MATH  Google Scholar 

  41. F. J. Harris, Proc. IEEE, 39, No. 1, 51 (1978). 753

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. B. Rozanov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 59, No. 8–9, pp. 828–841, August–September 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rozanov, S.B., Zavgorodniy, A.S., Ignatyev, A.N. et al. Variations in Microwave Radiation of the Nighttime Mesospheric Ozone over Moscow. Radiophys Quantum El 59, 741–753 (2017). https://doi.org/10.1007/s11141-017-9743-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-017-9743-9

Navigation