Skip to main content
Log in

The Features of the Frequency-Modulation Method When Studying the Shapes of the Spectral Lines of Nonlinear Absorption

  • Published:
Radiophysics and Quantum Electronics Aims and scope

We briefly consider the method of the frequency (phase) modulation and signal detection at the second harmonic of the modulation frequency for recording and analyzing the spectral-line shapes. The precision sub-Doppler spectrometer in the millimeter- and submillimeter-wave ranges, which operated in the regime of nonlinear saturation of the spectral transitions in a standing wave (the Lamb-dip method), was used during the measurements. The influence of the saturation degree on the value and shape of the recorded frequency-modulated signals in the quadrature channels during the synchronous detection is demonstrated. Variation in the relationships among the signals determined by dispersion and absorption was observed. The necessity of allowance for the influence of the group-velocity dispersion and coherent effects on the shape of the recorded spectral lines is experimentally shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. G.Yu.Golubiatnikov, S.P.Belov, I. I. Leonov, et al., Radiophys. Quantum Electron., 56, Nos. 8–9, 599 (2013).

  2. G.Yu.Golubiatnikov, S.P.Belov, and A.V. Lapinov, Radiophys. Quantum Electron., 58, No. 8, 622 (2015).

  3. A. V. Lapinov, S. A. Levshakov, M. G.Kozlov, et al., RFBR Bull., No. 1(73), 111 (2012).

  4. V. S. Letokhov and V.P.Chebotaev, Sov. Phys. Uspekhi, 17, No. 4, 467 (1975).

  5. V.P.Kochanov, S.P. Belov, and G.Yu.Golubiatnikov, J. Quant. Spectrosc. Rad. Transfer, 149, 146 (2014).

  6. R.Karplus, Phys. Rev., 73, No. 9, 1027 (1948).

  7. S. N. Bagaev, E. V. Baklanov, and V. P.Chebotaev, JETP Lett., 16, No. 1, 9 (1972).

  8. T. O.Meyer and C. K. Rhodes, Phys. Rev. A, 12, No. 5, 1993 (1975).

  9. V.P.Kochanov, S.G.Rautian, and A. M. Shalagin, Sov. Phys. JETP, 45, No. 4, 714 (1977).

  10. V.P.Kochanov, JETP, 118, No. 3, 335 (2014).

  11. S. N. Bagaev and V. P.Chebotaev, Sov. Phys. Uspekhi, 29, No. 1, 82 (1986).

  12. S. N. Bagayev, V.P.Chebotayev, and E. A.Titov, Laser Phys., 4, No. 2, 224 (1994).

  13. C. J.Borde, J. L.Hall, C.V. Kunasz, and D.G.Hummer, Phys. Rev. A, 14, No. 1, 236 (1976).

  14. S. N. Bagayev, V.P.Chebotayev, A.K.Dmitriyev, et al., Appl. Phys. B, 52, 63 (1991).

  15. Ch.Chardonnet, F.Guernet, G.Charton, Ch.Bord, J. Appl. Phys. B, 59, No. 3, 333 (1994).

  16. S. L.McCall and E. L.Hahn, Phys. Rev. Lett., 18, No. 21, 908 (1967).

  17. P.G. Kryukov and V. S. Letokhov, Sov. Phys. Uspekhi, 12, No. 5, 64 (1970).

  18. J.M. Supplee, E.A.Whittaker, and W. Lenth, Appl. Opt., 33, No. 27, 6294 (1994).

  19. G. C.Bjorklund, M.D. Levenson, W. Lenth, and C. Ortiz, Appl. Phys. B, 32, No. 3, 145 (1983).

  20. S. W. North, X. S. Zheng, R. Fei, and G.E.Hall, J. Chem. Phys., 104, No. 6, 2129 (1996).

  21. L.-S.Ma, J.Ye, P.Dube, and J. L.Hall, J. Opt. Soc. Am. B, 16, No. 12, 2255 (1999).

  22. A. Foltynowicz, F. M. Schmidt, W. Ma, and O. Axner, Appl. Phys. B, 92, No. 3, 313 (2008).

  23. P.Kluczynski and O.Axner, Appl. Opt., 38, No. 27, 5803 (1999).

  24. P. Kluczynski, J.Gustafsson, A.M. Lindberg, and O.Axner, Spectrochim Acta B, 56, 1277 (2001).

  25. J.P. M. De Vreede, S.C. Mehrotra, A.Tal, and H. A. Dijkerman, Appl. Spectrosc., 36, No. 3, 227 (1982).

  26. H.Wahlquist, J. Chem. Phys., 35, No. 5, 1708 (1961).

  27. R. Arndt, J. Appl. Phys., 36, No. 8, 2522 (1965).

  28. J.Reid and D. Labrie, Appl. Phys. B, 26, No. 3, 203 (1981).

  29. P.Kluczynski, A.M. Lindberg, and O.Axner, J. Quant. Spectrosc. Rad. Transfer, 83, Nos. 3–4, 345 (2004).

  30. L. Dore, J. Mol. Spectrosc., 221, 93 (2003).

    Article  ADS  Google Scholar 

  31. E. De Tommasi, A.Castrillo, G.Casa, and L.Gianfrani, J. Quant. Spectrosc. Rad. Transfer, 109, No. 2, 168 (2008).

  32. W. Ma, A. Foltynowicz, and O.Axner, J. Opt. Soc. Am. B, 25, No. 7, 1144 (2008).

  33. A. Foltynowicz, W. Ma, F.M. Schmidt, and O. Axner, J. Opt. Soc. Am. B, 25, No. 7, 1156 (2008).

    Article  ADS  Google Scholar 

  34. O. Axner, W. Ma, and A. Foltynowicz, J. Opt. Soc. Am. B, 25, No. 7, 1166 (2008).

    Article  ADS  Google Scholar 

  35. A. V. Matsko, O.Kocharovskaya, Y.Rostovstev, et al., Adv. Atom. Mol. Opt. Phys., 46, 191 (2001).

  36. M. N. Afsar, H.Chi, and H. Sobhie, in: Proc. SPIE., San Diego, USA, January 10, 1994, Vol. 2211, p. 768.

  37. G.C. Bjorklund and M.D. Levenson, Phys. Rev. A, 24, No. 1, 166 (1981).

    Article  ADS  Google Scholar 

  38. A. Schenzle, R.G. DeVoe, and R. G. Brewer, Phys. Rev. A, 25, No. 5, 2606 (1982).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Yu. Golubiatnikov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 59, No. 8–9, pp. 798–810, August–September 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golubiatnikov, G.Y., Belov, S.P. & Lapinov, A.V. The Features of the Frequency-Modulation Method When Studying the Shapes of the Spectral Lines of Nonlinear Absorption. Radiophys Quantum El 59, 715–726 (2017). https://doi.org/10.1007/s11141-017-9740-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-017-9740-z

Navigation