Skip to main content
Log in

Multichannel Ka-Band Microwave Oscillator Based on Frequency-Shifted Relativistic Backward-Wave Oscillators

  • Published:
Radiophysics and Quantum Electronics Aims and scope

Experiments on summation of linearly polarized Gaussian wave beams in free space from two and four synchronous nanosecond Ka-band relativistic backward wave oscillators (BWOs), each having an output power of about 200 MW with controllably shifted oscillator frequencies have been carried out. An about 0.5% frequency shift in one of the channels was equivalent to a one-period phase delay of the carrier frequency. In a two-channel version of the device, a full beat cycle was obtained for a pulse with quadratic (with respect to the number of sources) enhancement of the power flux density at the interference maximum of the integral directional pattern (DP). In the case of a four-channel device, a diagonal displacement of the DP lobes has been demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. F.Kovalev, M. I.Petelin, M.D.Raizer, et al., JETP Lett ., 18, No. 4, 138 (1973).

    ADS  Google Scholar 

  2. I.K.Kurkan, V.V.Rostov, and E.M.Tot’meninov, Tech. Phys. Lett ., 24, No. 5, 388 (1998).

    Article  ADS  Google Scholar 

  3. D.M.Grishin, V. P.Gubanov, S.D. Korovin, et al., Tech. Phys. Lett ., 28, No. 10, 806 (2002).

    Article  ADS  Google Scholar 

  4. N. S. Ginzburg, N.Yu.Novozhilova, I.V. Zotova, et al., Phys. Rev. E, 60, 3297 (1999).

    Article  ADS  Google Scholar 

  5. A. A. El’chaninov, S. D.Korovin, V. V. Rostov, et al., JETP Lett ., 77, No. 6, 266 (2003).

    Article  ADS  Google Scholar 

  6. A. A. El’chaninov, S. D.Korovin, I. V. Pegel’, et al., Radiophys. Quantum Electron., 46, No. 10, 782 (2003).

    Article  ADS  Google Scholar 

  7. S. D.Korovin, G. A. Mesyats, V. V. Rostov, et al., Tech. Phys. Lett ., 30, No. 2, 117 (2004).

    Article  ADS  Google Scholar 

  8. S. N. Artemenko, G. M. Samoilenko, A. S. Shlapakovski, et al., J. Appl. Phys., 119, 014501 (2016).

    Article  ADS  Google Scholar 

  9. A. L. Vikharev, A. M. Gorbachev, O. A. Ivanov, et al., Radiophys. Quantum Electron., 51, No. 8, 597 (2008).

    Article  ADS  Google Scholar 

  10. V. L. Bratman, G. G. Denisov, N.G.Kolganov, et al., Tech. Phys., 56, No. 2, 269 (2011).

    Article  Google Scholar 

  11. K. V. Afanas’ev, N. M. Bykov, V. P. Gubanov, et al., Tech. Phys. Lett ., 32, No. 11, 925 (2006).

    Article  ADS  Google Scholar 

  12. D.M.Grishin, S. K. Lyubutin, G.A.Mesyats, et al., Tech. Phys. Lett ., 34, No. 10, 822 (2008).

    Article  ADS  Google Scholar 

  13. V.V. Rostov, A.A. Elchaninov, I.V. Romanchenko, and M. I.Yalandin, Appl. Phys. Lett ., 100, 224102 (2012).

    Article  ADS  Google Scholar 

  14. V.V. Rostov, A.A.Elchaninov, I.V. Romanchenko, et al., Radiophys. Quantum Electron., 56, Nos. 8–9, 475 (2013).

    ADS  Google Scholar 

  15. A. A. El’chaninov, A. I.Klimov, O.B.Koval’chuk, et al., Tech. Phys., 56, No. 1, 121 (2011).

    Article  Google Scholar 

  16. M. I.Yalandin, S. A. Shunailov, M. R. Ul’maskulov, et al., Tech. Phys. Lett ., 38, No. 10, 917 (2012).

    Article  ADS  Google Scholar 

  17. K. A. Sharypov, A. A. Elchaninov, G.A.Mesyats, et al., Appl. Phys. Lett ., 103, 134103 (2013).

    Article  ADS  Google Scholar 

  18. N. S. Ginzburg, A. W.Cross, A. A. Golovanov, et al., Phys. Rev. Lett ., 115, 114802 (2015).

    Article  ADS  Google Scholar 

  19. V. V. Rostov, A.A. Elchaninov, A. I.Klimov, et al., IEEE Trans. Plasma Sci., 41, No. 10-1, 2735 (2013).

    Article  ADS  Google Scholar 

  20. A. M. Bechasnov, V. L.Bratman, N.G.Kolganov, et al., Tech. Phys. Lett ., 36, No. 2, 140 (2010).

    Article  ADS  Google Scholar 

  21. V.G. Shpak, S.A. Shunailov, M. I.Yalandin, et al., Prib. Tekh. Éksp., 1, 149 (1993).

    Google Scholar 

  22. K. A. Sharypov, M. R. Ul’maskulov, V. G. Shpak, et al., Rev. Sci. Instr., 85, 125104 (2014).

    Article  ADS  Google Scholar 

  23. M. I.Yalandin, G. A. Mesyats, V. V. Rostov, et al., Appl. Phys. Lett ., 106, 233504 (2015).

    Article  ADS  Google Scholar 

  24. S.Ya. Belomyttsev, V.V. Rostov, I. V. Romanchenko, et al., J. Appl. Phys., 119, 023304 (2016).

    Article  ADS  Google Scholar 

  25. G. S. Boltachev, V. V. Rostov, K.A. Sharypov, et al., IEEE Trans. Plasma Sci., 43, No. 8-3, 2613 (2015).

    Article  ADS  Google Scholar 

  26. S. N. Rukin, Instr. Exp. Tech., 42, No. 4, 439 (1999).

    Google Scholar 

  27. A. I.Gusev, M. S.Pedos, S.N. Rukin, et al., Rev. Sci. Instr., 86, 114706 (2015).

    Article  ADS  Google Scholar 

  28. D. V. Vinogradov and G.G. Denisov, Radiophys. Quantum Electron., 33, No. 6, 540 (1990).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. I. Yalandin.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 59, No. 8–9, pp. 698–708, August–September 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yalandin, M.I., Sharypov, K.A., Pedos, M.S. et al. Multichannel Ka-Band Microwave Oscillator Based on Frequency-Shifted Relativistic Backward-Wave Oscillators. Radiophys Quantum El 59, 629–637 (2017). https://doi.org/10.1007/s11141-017-9729-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-017-9729-7

Navigation