Skip to main content
Log in

The ⋋ Structure of the Heat Capacity of an Ideal Gas in the Critical Region of Bose–Einstein Condensation for Various Mesoscopic Traps

  • Published:
Radiophysics and Quantum Electronics Aims and scope

The features of the ⋋ structure of the heat capacity of an ideal gas of Bose atoms, which is confined in arbitrarily shaped and sized mesoscopic traps, are considered on the basis of a general exact description of the Bose–Einstein condensation. The main attention is paid to the boundarycondition role in the critical region, in which the heat capacity is described by a self-similar function that is sensitive to perturbations of the confining potential and the boundary-condition variation. Various traps, which allow one to experimentally study the influence of the boundary conditions on the shape of the ⋋ structure of the heat capacity and observe variations in other thermodynamic parameters due to the corresponding rearrangement of the self-similar structure of the critical region, are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. Gӧrlitz, J.Vogels, A. Leanhardt, et al., Phys. Rev. Lett., 87, No. 13, 130402 (2001).

  2. D. Rychtarik, B. Engeser, H.-C. N¨agerl, and R. Grimm, Phys. Rev. Lett., 92, No. 17, 173003 (2001).

  3. N. Smith, W. Heathcote, G. Hechenblaikner, et al., J. Phys. B: Atom. Mol. Opt. Phys., 38, No. 3, 223 (2005).

    Article  ADS  Google Scholar 

  4. A. L.Gaunt, T. F. Schmidutz, I.Gotlibovych, et al., Phys. Rev. Lett., 110, No. 20, 200406 (2013).

  5. T.Meyrath, F. Schreck, J.Hanssen, et al., Phys. Rev. A, 71, No. 4, 041604 (2005).

  6. K. Henderson, C.Ryu, C.MacCormick, and M.Boshier, New J. Phys., 11, No. 4, 043030 (2009).

  7. L. P. Pitaevskii and S. Stringari, Bose-Einstein Condensation, Oxford University Press, Oxford (2003).

    MATH  Google Scholar 

  8. I. Bloch, J. Dalibard, and W. Zwerger, Rev. Mod. Phys., 80, No. 3, 885 (2008).

    Article  ADS  Google Scholar 

  9. L.D. Landau and E. M. Lifshitz, Statistical Physics, Pt. 1 Butterworth–Heinemann, Oxford (1980).

  10. S. De Groot, G. Hooyman, and C.Ten Seldam, Proc. Roy. Soc. London A, 203, 266 (1950).

  11. V. V.Kocharovsky and Vl. V.Kocharovsky, Phys. Rev. A, 81, No. 3, 033615 (2010).

  12. V. V.Kocharovsky and Vl. V.Kocharovsky, J. Phys. A: Math. Theor., 43, No. 22, 225001 (2010).

  13. S. V.Tarasov, Vl. V.Kocharovsky, and V.V.Kocharovsky, Phys. Review A, 90, No. 3, 033605 (2014).

  14. S. V.Tarasov, Vl. V.Kocharovsky, and V.V.Kocharovsky, J. Phys. A: Math. Theor., 47, No. 41, 4150035 (2014).

  15. J.Wang, Y.Ma, and J.He, J. Low Temp. Phys., 162, Nos. 1–2, 23 (2011).

  16. S. Inouye, M.Andrews, J. Stenger, et al., Nature, 392, No. 6672, 151 (1998).

  17. N. Nygaard, B. I. Schneider, and P. S. Julienne, Phys. Rev. A, 73, No. 4, 042705 (2006).

    Article  ADS  Google Scholar 

  18. R. M. Ziff, G. E. Uhlenbeck, and M.Kac, Phys. Rep., 32, No. 4, 169 (1977).

  19. S. V.Tarasov, Vl. V.Kocharovsky, and V.V.Kocharovsky, J. Stat. Phys., 161, No. 4, 942 (2015).

  20. V. V.Kocharovsky, Vl. V.Kocharovsky, and S.V.Tarasov, JETP Lett., 103, No. 1, 62 (2016).

  21. A.Voros, Commun. Math. Phys., 110, No. 3, 439 (1987).

  22. A.Voros, Adv. Stud. Pure Math., 21, 327 (1992).

  23. M. Holthaus, K.T.Kapale, V. V.Kocharovsky, and M.O. Scully, Physica A: Stat. Mech. Appl., 300, No. 3, 433 (2001).

  24. S.Gupta, K.Murch, K.Moore, et al., Phys. Rev. Lett., 95, No. 14, 143201 (2005).

  25. S. Franke-Arnold, J. Leach, M. J.Padgett, et al., Opt. Express, 15, No. 14, 8619 (2007).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Tarasov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 59, No. 6, pp. 554–569, June 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarasov, S.V. The ⋋ Structure of the Heat Capacity of an Ideal Gas in the Critical Region of Bose–Einstein Condensation for Various Mesoscopic Traps. Radiophys Quantum El 59, 501–514 (2016). https://doi.org/10.1007/s11141-016-9718-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-016-9718-2

Navigation