Skip to main content
Log in

Optimization of Phenolic Compounds Extraction of Different Parts of Camu-camu Fruit from Different Geographic Regions

  • Review Article
  • Published:
Plant Foods for Human Nutrition Aims and scope Submit manuscript

Abstract

Phenolic compounds in camu-camu (Myrciaria dubia) have received interest due to their health-promoting effects. However, these compounds have been poorly investigated in the different parts of the camu-camu fruit (pulp, peel, and seeds). This study aimed to optimize the solvent composition for extraction of phenolic compounds from pulp, peels, and seeds of camu-camu through a simplex-centroid mixture design. Then, the profile of phenolic compounds in samples of camu-camu pulp, peels, and seeds from different regions in Brazil and South America was determined by UPLC-ESI-MS/MS. Aqueous ethanol (80%, v/v) yielded the highest extraction for the pulp and peel, while aqueous methanol (50%, v/v) was selected for the seed. Camu-camu parts had p-coumaric acid, catechin, epicatechin, luteolin, rutin, and quercetin, with catechin as the major compound in the pulp, peels, and seeds of all the evaluated samples. The peel showed lower concentrations of these compounds compared with the pulp and the seed; the content of phenolic compounds also differed according to the geographic region. These results broaden the knowledge on phytochemical extraction and composition of camu-camu pulp, peel, and seed and may guide future applications of their extracts in the food industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Akter MS, Oh S, Eun J-B, Ahmed M (2011) Nutritional compositions and health promoting phytochemicals of camu-camu (Myrciaria dubia) fruit: a review. Food Res Int 44:1728–1732. https://doi.org/10.1016/j.foodres.2011.03.045

    Article  CAS  Google Scholar 

  2. Arellano-Acuña E, Rojas-Zavaleta I, Paucar-Menacho LM (2016) Camu-camu (Myrciaria dubia): fruta tropical de excelentes propiedades funcionales que ayudan a mejorar la calidad de vida. Sci Agropecu 7:433–443. https://doi.org/10.17268/sci.agropecu.2016.04.08

    Article  Google Scholar 

  3. Rodrigues LM, Romanini EB, Silva E, Pilau EJ, da Costa SC, Madrona GS (2020) Camu-camu bioactive compounds extraction by ecofriendly sequential processes (ultrasound assisted extraction and reverse osmosis). Ultrason Sonochem 64:105017. https://doi.org/10.1016/j.ultsonch.2020.105017

    Article  CAS  PubMed  Google Scholar 

  4. De Azevêdo JCS, Fujita A, de Oliveira EL, Genovese MI, Correia RTP (2014) Dried camu-camu (Myrciaria dubia H.B.K. McVaugh) industrial residue: a bioactive-rich Amazonian powder with functional attributes. Food Res Int 62:934–940. https://doi.org/10.1016/j.foodres.2014.05.018

    Article  CAS  Google Scholar 

  5. Gonçalves AESS, Lellis-Santos C, Curi R, Lajolo FM, Genovese MI (2014) Frozen pulp extracts of camu-camu (Myrciaria dubia McVaugh) attenuate the hyperlipidemia and lipid peroxidation of Type 1 diabetic rats. Food Res Int 64:1–8. https://doi.org/10.1016/j.foodres.2014.05.074

    Article  CAS  Google Scholar 

  6. Pires MA, Rodrigues I, Barros JC, Carnauba G, de Carvalho FAL, Trindade MA (2020) Partial replacement of pork fat by Echium oil in reduced sodium bologna sausages: technological, nutritional and stability implications. J Sci Food Agric 100:410–420. https://doi.org/10.1002/jsfa.10070

    Article  CAS  PubMed  Google Scholar 

  7. Fujita A, Sarkar D, Genovese MI, Shetty K (2017) Improving anti-hyperglycemic and anti-hypertensive properties of camu-camu (Myriciaria dubia Mc. Vaugh) using lactic acid bacterial fermentation. Process Biochem 59:133–140. https://doi.org/10.1016/j.procbio.2017.05.017

    Article  CAS  Google Scholar 

  8. Fujita A, Sarkar D, Wu S, Kennelly E, Shetty K, Genovese MI (2015) Evaluation of phenolic-linked bioactives of camu-camu (Myrciaria dubia Mc. Vaugh) for antihyperglycemia, antihypertension, antimicrobial properties and cellular rejuvenation. Food Res Int 77:194–203. https://doi.org/10.1016/j.foodres.2015.07.009

    Article  CAS  Google Scholar 

  9. Inoue T, Komoda H (2008) Tropical fruit camu-camu (Myrciaria dubia) has anti-oxidative and anti-inflammatory properties. J Cardiol 52:127–132. https://doi.org/10.1016/j.jjcc.2008.06.004

    Article  PubMed  Google Scholar 

  10. Fidelis M, do Carmo MAV, da Cruz TM, Azevedo L, Myoda T, Furtado MM, Marques MB, Sant’Ana A, Genovese MI, Oh WY, Wen M, Shahidi F, Zhang L, Franchin M, de Alencar SM, Rosalen PL, Granato D (2020) Camu-camu seed (Myrciaria dubia) – from side stream to anantioxidant, antihyperglycemic, antiproliferative, antimicrobial, antihemolytic, anti-inflammatory, and antihypertensive ingredient. Food Chem 310:125909. https://doi.org/10.1016/j.foodchem.2019.125909

    Article  CAS  PubMed  Google Scholar 

  11. Fidelis M, Santos JS, Escher GB, do Carmo MV, Azevedo L, da Silva MC, Putnik P, Granato D (2018) In vitro antioxidant and antihypertensive compounds from camu-camu (Myrciaria dubia McVaugh, Myrtaceae) seed coat: a multivariate structure-activity study. Food Chem Toxicol 120:479–490. https://doi.org/10.1016/j.fct.2018.07.043

    Article  CAS  PubMed  Google Scholar 

  12. Kaneshima TAK, Myoda T, Nakata M, Fujimori T, Toeda K, Nishizawa M (2016) Antioxidant activity of C-Glycosidic ellagitannins from the seeds and peel of camu-camu (Myrciaria dubia). LWT-Food Sci Technol 69:76–81. https://doi.org/10.1016/j.lwt.2016.01.024

    Article  CAS  Google Scholar 

  13. De Moraes MR, da Silveira TFF, Coutinho JP, Souza DS, Duarte MCT, Duarte RT, Filho JT, Godoy HT (2021) Bioactivity of atemoya fruits and by-products. Food Biosci 41:101036. https://doi.org/10.1016/j.fbio.2021.101036

    Article  CAS  Google Scholar 

  14. Da Fonseca Machado AP, Geraldi MV, de Paula do Nascimento R, Moya AMM, Vezza T, Diez-Echave P, Gálvez JJ, Cazarin CBB, Júnior MRM (2021) Polyphenols from food by-products: an alternative or complementary therapy to IBD conventional treatments. Food Res Int 140:110018. https://doi.org/10.1016/j.foodres.2020.110018

    Article  CAS  Google Scholar 

  15. De Azevêdo JCS, Borges KC, Genovese MI, Correia RTP, Vattem DA (2015) Neuroprotective effects of dried camu-camu (Myrciaria dubia HBK McVaugh) residue in C. elegans. Food Res Int 73:135–141. https://doi.org/10.1016/j.foodres.2015.02.015

    Article  CAS  Google Scholar 

  16. Cabral B, Bortolin RH, Gonçalves TAF, Maciel PMP, Arruda AV, Carvalho TG, Abboud KY, Alves JSF, Cordeiro LMC, Medeiros IA, Rezende AA, Zucolotto SM (2021) Hypoglycemic and vasorelaxant effect of Passiflora edulis fruit peel by-product. Plant Foods Hum Nutr 76:466–471. https://doi.org/10.1007/s11130-021-00921-8

    Article  CAS  PubMed  Google Scholar 

  17. Souza DS, Souza JDRP, Coutinho JP, da Silveira TFF, Ballus CA, Filho JT, Bolini HMA, Godoy HT (2020) Application of tamarind waste extracts to improve the antioxidant properties of tamarind nectars. Plant Foods Hum Nutr 75:70–75. https://doi.org/10.1007/s11130-019-00778-y

    Article  CAS  PubMed  Google Scholar 

  18. Michiels JA, Kevers C, Pincemail J, Defraigne JO, Dommes J (2012) Extraction conditions can greatly influence antioxidant capacity assays in plant food matrices. Food Chem 130:986–993. https://doi.org/10.1016/j.foodchem.2011.07.117

    Article  CAS  Google Scholar 

  19. Kavak DD, Akdeniz B (2019) Sorbus umbellata (Desf.) Fritsch var. umbellata leaves: optimization of extraction conditions and investigation antimicrobial, cytotoxic, and β-glucuronidase inhibitory potential. Plant Foods Hum Nutr 74:364–369. https://doi.org/10.1007/s11130-019-00743-9

    Article  CAS  PubMed  Google Scholar 

  20. Da Silveira TFF, de Andrade Lima M, Meinhart AD, Kuhnle GGC, Godoy HT (2020) Effect of solvent composition on the extraction of phenolic compounds and antioxidant capacity of bacaba juice (Oenocarpus bacaba Mart.). Food Anal Methods 13:1119–1128. https://doi.org/10.1007/s12161-020-01726-2

    Article  Google Scholar 

  21. De Moraes MR, Ryan SM, Godoy HT, Thomas AL, Maia JGS, Richards KM, Tran K (2020) Phenolic compounds and metals in some edible annonaceaer. Fruits Biol Trace Elem Res 197:676–682. https://doi.org/10.1007/s12011-019-02005-w

    Article  CAS  PubMed  Google Scholar 

  22. Oldoni TLC, Merlin N, Karling M, Carpes ST, de Alencar SM, Morales RGF, da Silva EA, Pilau EJ (2019) Bioguided extraction of phenolic compounds and UHPLC-ESI-Q-TOF-MS/MS characterization of extracts of Moringa oleifera leaves collected in Brazil. Food Res Int 125:108647. https://doi.org/10.1016/j.foodres.2019.108647

    Article  CAS  PubMed  Google Scholar 

  23. Thompson M, Ellison SLR, Wood R (2002) Harmonized guidelines for single laboratory. Pure Appl Chem 74:835–855. https://doi.org/10.1351/pac200274050835

    Article  CAS  Google Scholar 

  24. Da Silveira TFF, Godoy HT (2019) Non-anthocyanin phenolic compounds in açaí (Euterpe oleracea Mart.) juice by ultrahigh-performance liquid chromatography-diode array detector (UHPLC-DAD): a multivariate pptimization. J Chromatogr Sci 2:139–148. https://doi.org/10.1093/chromsci/bmy095

    Article  CAS  Google Scholar 

  25. Carvalho AV, da Silveira TF, de Sousa SHB, Moraes MR, Godoy HT (2016) Phenolic composition and antioxidant capacity of bacaba-de-leque (Oenocarpus distichus Mart.) genotypes. J Food Compos Anal 54:1–9. https://doi.org/10.1016/j.jfca.2016.09.013

    Article  CAS  Google Scholar 

  26. Bataglion GA, da Silva FMA, Eberlin MN, Koolen HHF (2015) Determination of the phenolic composition from Brazilian tropical fruits by UHPLC–MS/MS. Food Chem 180:280–287. https://doi.org/10.1016/j.foodchem.2015.02.059

    Article  CAS  PubMed  Google Scholar 

  27. Fidelis M, do Carmo MAV, da Cruz TM, Azevedo L, Myoda T, Furtado MM, Marques MB, Sant’Ana AS, Genovese MI, Oh WY, Mingchun W, Shahidi F, Zhang L, Franchin M, de Alencar SM, Rosalen PL, Granato D (2020) Camu-camu seed (Myrciaria dubia) - from side stream to an antioxidant, antihyperglycemic, antiproliferative, antimicrobial, antihemolytic, anti-inflammatory, and antihypertensive ingredient. Food Chem 310:125909. https://doi.org/10.1016/j.foodchem.2019.125909

    Article  CAS  PubMed  Google Scholar 

  28. Fidelis M, Oliveira SM, De, Santos JS, Escher GB, Rocha RS, Cruz AG, do Carmo MAV, Azevedo L, Kaneshima T, Oh WY, Shahidi F, Granato D (2020) From byproduct to a functional ingredient: camu-camu (Myrciaria dubia) seed extract as an antioxidant agent in a yogurt model. Int J Dairy Sci 103:1131–1140. https://doi.org/10.3168/jds.2019-17173

    Article  CAS  Google Scholar 

  29. Fracassetti D, Costa C, Moulay L, Tomás-barberán FA (2013) Ellagic acid derivatives, ellagitannins, proanthocyanidins and other phenolics, vitamin C and antioxidant capacity of two powder products from camu-camu fruit (Myrciaria dubia). Food Chem 139:578–588. https://doi.org/10.1016/j.foodchem.2013.01.121139. :578–588

    Article  CAS  PubMed  Google Scholar 

  30. Neves LC, da Silva VX, Chagas EA, Lima CGB, Roberto SR (2015) Determining the harvest time of camu-camu [Myrciaria dubia (H.B.K.) McVaugh] using measured pre-harvest attributes. Sci Hortic (Amsterdam) 186:15–23. https://doi.org/10.1016/j.scienta.2015.02.006

    Article  Google Scholar 

  31. Conceição N, Albuquerque BR, Pereira C, Corrêa RCG, Lopes CB, Calhelha RC, Alves MJ, Barros L, Ferreira ICFR (2020) By-products of camu-camu [Myrciaria dubia (Kunth) McVaugh] as promising sources of bioactive high added-value food ingredients: functionalization of yogurts. Molecules 25:1–17. https://doi.org/10.3390/molecules25010070

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to CAPES (Coordination for the Improvement of Higher Education Personnel) for financial support.

Author information

Authors and Affiliations

Authors

Contributions

ECECS and HTG designed the study. ECECS, CRS and TFFS analyzed the data, and ECECS and TFFS wrote the manuscript. All authors critically provided feedback on the manuscript.

Corresponding author

Correspondence to Tayse Ferreira Ferreira da Silveira.

Ethics declarations

Conflict of interest

The authors declare to have no confict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cunha-Santos, E.C.E., Rodrigues-Silva, C., da Silveira, T.F.F. et al. Optimization of Phenolic Compounds Extraction of Different Parts of Camu-camu Fruit from Different Geographic Regions. Plant Foods Hum Nutr 77, 340–344 (2022). https://doi.org/10.1007/s11130-022-00985-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11130-022-00985-0

Keywords

Navigation