Skip to main content
Log in

Automation of quantum Braitenberg vehicles using finite automata: Moore machines

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Since the advent of quantum computation, there have been attempts to apply quantum mechanics to robotics and develop quantum robots. In this paper, we discuss the working of classical Braitenberg vehicles and the various problems which lead us to propose a novel improvement by automating it using classical finite automata, Moore machines. We then improve by introducing an intrinsic nature to it such that it stops its motion without requiring external signals, by using entanglement. This leads to our design of a quantum automated Braitenberg vehicle which we improve by incorporating the possibility of external control over its movement. We implement the circuits in IBM quantum experience and obtain results matching our theoretical predictions. This paper makes the following contributions: an experimental verification of the quantum logic with reasonably good results despite decoherence and errors in quantum gate applications, the idea of introducing intrinsic behaviour using quantum mechanics, the idea of flexibility in developing manual external controls, and achieving better results than classical robots using lesser number of gates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Landauer, R.: The physical nature of information. Phys. Lett. A 217, 188 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  2. Benioff, P.: The computer as a physical system: a microscopic quantum mechanical Hamiltonian model of computers as represented by Turing machines. J. Stat. Phys. 22, 563 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  3. Feynman, R.: Simulating physics with computers. Int. J. Theor. Phys. 21, 467 (1982)

    Article  MathSciNet  Google Scholar 

  4. Manin, Y.: Computable and Uncomputable. Sovetskoye Radio, Moscow (1980)

    Google Scholar 

  5. Deutsch, D.: Quantum theory, the Church–Turing principle and the universal quantum computer. In: Proceedings of the Royal Society (1985)

    Article  ADS  MathSciNet  Google Scholar 

  6. Nielsen, M.: Conditions for a class of entanglement transformations. Phys. Rev. Lett. 83, 436 (1999)

    Article  ADS  Google Scholar 

  7. Weihs, G., Jennewein, T., Simon, C., Weinfurter, H., Zeilinger, A.: Violation of Bell’s inequality under strict Einstein locality conditions. Phys. Rev. Lett. 81, 5039 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  8. Benioff, P.: Quantum robots and environments. Phys. Rev. A 58, 893 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  9. Dong, D.Y., Chen, C.L., Zhang, C.B., Chen, Z.H.: Quantum mechanics helps in learning for more intelligent robots. Chin. Phys. Lett. 23, 1691 (2006)

    Article  ADS  Google Scholar 

  10. Dong, D.Y., Chen, C.L., Zhang, C.B., Chen, Z.H.: Quantum robot: structure, algorithms and applications. Robotica 24, 513 (2006)

    Article  Google Scholar 

  11. Toffano, Z., Dubois, F.: Eigenlogic: interpretable quantum observables with applications to fuzzy behavior of vehicular robots. arXiv:1707.05654

  12. Zizzi, P.A.: I, Quantum robot: quantum mind control on a quantum computer. arXiv:0812.4614

  13. Braitenberg, V.: Vehicles: Experiments in Synthetic Psychology, Reprint edn. MIT Press, Cambridge (1986)

    Google Scholar 

  14. Moore machines, Wikipedia

  15. Srinivasan, K., Satyajit, S., Behera, B.K., Panigrahi, P.K.: Efficient quantum algorithm for solving travelling salesman problem: an IBM quantum experience. arxiv:1805.10928

  16. Dash, A., Rout, S., Behera, B.K., Panigrahi, P.K.: quantum locker using a novel verification algorithm and its experimental realization in IBM quantum computer. arxiv:1710.05196

  17. Vishnu, P.K., Joy, D., Behera, B.K., Panigrahi, P.K.: Experimental demonstration of non-local controlled-unitary quantum gates using a five-qubit quantum computer. Quantum Inf. Process. 17, 274 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  18. Satyajit, S., Srinivasan, K., Behera, B.K., Panigrahi, P.K.: Nondestructive discrimination of a new family of highly entangled states in IBM quantum computer. Quantum Inf. Process. 17, 212 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  19. Roy, S., Behera, B.K., Panigrahi, P.K.: Experimental realization of quantum violation of entropic noncontextual inequality in four dimension using IBM quantum computer. arxiv:1710.10717

  20. Gangopadhyay, S., Manabputra, Behera, B.K., Panigrahi, P.K.: Generalization and demonstration of an entanglement-based Deutsch–Jozsa-like algorithm using a 5-qubit quantum computer. Quantum Inf. Process. 17, 160 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  21. Behera, B.K., Seth, S., Das, A., Panigrahi, P.K.: Demonstration of entanglement purification and swapping protocol to design quantum repeater in IBM quantum computer. Quantum Inf. Process. 18, 108 (2019)

    Article  ADS  Google Scholar 

  22. Jha, R., Das, D., Dash, A., Jayaraman, S., Behera, B.K., Panigrahi, P.K.: A Novel quantum N-Queens solver algorithm and its simulation and application to satellite communication using IBM quantum experience. arxiv:1806.10221

  23. Dash, A., Sarmah, D., Behera, B.K., Panigrahi, P.K.: Exact search algorithm to factorize large biprimes and a triprime on IBM quantum computer. arxiv:1805.10478

  24. Behera, B.K., Reza, T., Gupta, A., Panigrahi, P.K.: Designing quantum router in IBM quantum computer. Quantum Inf. Process. 18, 328 (2019)

    Article  ADS  Google Scholar 

  25. Raghuvanshi, A., Fan, Y., Woyke, M., Perkowski, M.: Quantum robots for teenagers. In: Proceedings of the International Symposium on Multiple-Valued Logic (2007)

Download references

Acknowledgements

N.M. and S.C.R. would like to thank IISER Kolkata for providing hospitality during which this work has been done. B.K.B. acknowledges the support of IISER-K Institute fellowship. The authors acknowledge the support of IBM quantum experience for producing experimental results. The views expressed are those of the authors and do not reflect the official policy or position of IBM or the IBM quantum experience team.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bikash K. Behera.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Nimish Mishra and Rayala Sarath Chandra are co first authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, N., Chandra, R.S., Behera, B.K. et al. Automation of quantum Braitenberg vehicles using finite automata: Moore machines. Quantum Inf Process 19, 17 (2020). https://doi.org/10.1007/s11128-019-2512-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-019-2512-2

Keywords

Navigation