Skip to main content
Log in

Improving the performance of four-intensity decoy-state measurement-device-independent quantum key distribution via heralded pair-coherent sources

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Measurement-device-independent quantum key distribution (MDI-QKD) can remove all the side-channel attacks and significantly improve the secure transmission distance. However, the key generation rate is relatively low when taking finite-key-size effect into consideration. In this manuscript, we adopt the latest four-intensity decoy-state scheme combining the heralded pair-coherent sources to study the performance of the MDI-QKD. Moreover, through utilizing joint constraints and collective error estimation techniques, we can obviously improve the performance of practical MDI-QKD systems compared with those using weak coherent sources or heralded single-photon sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing. IEEE, New York, pp. 175–179 (1984)

  2. Lo, H.K., Chau, H.F.: Unconditional security of quantum key distribution over arbitrarily long distances. Science 283, 2050 (1999)

    Article  ADS  Google Scholar 

  3. Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85, 441 (2000)

    Article  ADS  Google Scholar 

  4. Mayers, D.: Unconditional security in quantum cryptography. J. Assoc. Comput. Mach. 48, 351 (2001)

    Article  MathSciNet  Google Scholar 

  5. Huttner, B., Imoto, N., Gisin, N., Mor, T.: Quantum cryptography with coherent states. Phys. Rev. A 51, 1863 (1995)

    Article  ADS  Google Scholar 

  6. Yuen, H.P.: Quantum amplifiers, quantum duplicators and quantum cryptography. Quantum Semiclass. Opt. 8, 939 (1996)

    Article  ADS  Google Scholar 

  7. Jain, N., Wittmann, C., Lydersen, L., Wiechers, C., Elser, D., Marquardt, C., Makarov, V., Leuchs, G.: Device calibration impacts security of quantum key distribution. Phys. Rev. Lett. 107, 110501 (2011)

    Article  ADS  Google Scholar 

  8. Brassard, G., Lütkenhaus, N., Mor, T., Sanders, B.C.: Limitations on practical quantum cryptography. Phys. Rev. Lett. 85, 1330 (2000)

    Article  ADS  Google Scholar 

  9. Lydersen, L., Wiechers, C., Wittmann, C., Elser, D., Skaar, J., Makarov, v: Hacking commercial quantum cryptography systems by tailored bright illumination. Nat. Photonics 4, 686 (2010)

    Article  ADS  Google Scholar 

  10. Lütkenhaus, N.: Security against individual attacks for realistic quantum key distribution. Phys. Rev. A 61, 052304 (2000)

    Article  ADS  Google Scholar 

  11. Lütkenhaus, N., Jahma, M.: Quantum key distribution with realistic states: photon-number statistics in the photon-number splitting attack. New J. Phys. 4, 44 (2002)

    Article  ADS  Google Scholar 

  12. Hwang, W.Y.: Quantum key distribution with high loss: toward global secure communication. Phys. Rev. Lett. 91, 057901 (2003)

    Article  ADS  Google Scholar 

  13. Wang, X.B.: Beating the photon-number-splitting attack in practical quantum cryptography. Phys. Rev. Lett. 94, 230503 (2005)

    Article  ADS  Google Scholar 

  14. Lo, H.K., Ma, X.F., Chen, K.: Decoy state quantum key distribution. Phys. Rev. Lett. 94, 230504 (2005)

    Article  ADS  Google Scholar 

  15. Wang, Q., Wang, X.B., Guo, G.C.: Practical decoy-state method in quantum key distribution with a heralded single-photon source. Phys. Rev. A 75, 012312 (2007)

    Article  ADS  Google Scholar 

  16. Braunstein, S.L., Pirandola, S.: Side-channel-free quantum key distribution. Phys. Rev. Lett. 108, 130502 (2012)

    Article  ADS  Google Scholar 

  17. Lo, H.K., Curty, M., Qi, B.: Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108, 130503 (2012)

    Article  ADS  Google Scholar 

  18. Wang, X.B.: Three-intensity decoy-state method for device-independent quantum key distribution with basis-dependent errors. Phys. Rev. A 87, 012320 (2013)

    Article  ADS  Google Scholar 

  19. Wang, Q., Wang, X.B.: Efficient implementation of the decoy-state measurement-device-independent quantum key distribution with heralded single-photon sources. Phys. Rev. A 88, 052332 (2013)

    Article  ADS  Google Scholar 

  20. Yu, Z.Y., Zhou, Y.H., Wang, X.B.: Three-intensity decoy-state method for measurement-device-independent quantum key distribution. Phys. Rev. A 88, 062339 (2013)

    Article  ADS  Google Scholar 

  21. Wang, Q., Wang, X.B.: Simulating of the measurement-device independent quantum key distribution with phase randomized general sources. Scientific Reports 4, 4612 (2014)

    Article  ADS  Google Scholar 

  22. Wang, C., Song, X.T., Yin, Z.Q.: Phase-reference-free experiment of measurement-device-independent quantum key distribution. Phys. Rev. Lett. 115, 160502 (2015)

    Article  ADS  Google Scholar 

  23. Wang, C., Yin, Z.Q., Wang, S., Chen, W., Guo, G.C., Han, Z.-F.: Measurement-device-independent quantum key distribution robust against environmental disturbances. Optica 4, 1016–1023 (2017)

    Article  Google Scholar 

  24. Zhou, Y.H., Yu, Z.W., Wang, X.B.: Making the decoy-state measurement-device-independent quantum key distribution practically useful. Phys. Rev. A 93, 042324 (2016)

    Article  ADS  Google Scholar 

  25. Xu, F., Xu, H., Lo, H.-K.: Protocol choice and parameter optimization in decoy-state measurement-device-independent quantum key distribution. Phys. Rev. A 89, 052333 (2014)

    Article  ADS  Google Scholar 

  26. Yu, Z.W., Zhou, Y.H., Wang, X.B.: Statistical fluctuation analysis for measurement-device-independent quantum key distribution with three-intensity decoy-state method. Phys. Rev. A 91, 032318 (2015)

    Article  ADS  Google Scholar 

  27. Zhou, X.Y., Zhang, C.H., Zhang, C.M., Wang, Q.: Obtaining better performance in the measurement-device-independent quantum key distribution with heralded single-photon sources. Phys. Rev. A 96, 052337 (2017)

    Article  ADS  Google Scholar 

  28. Zhang, C.H., Wang, D., Zhou, X.Y., Wang, S., Zhang, L.B., Yin, Z.Q., Chen, W., Han, Z.F., Guo, G.C., Wang, Q.: Proof-of-principle demonstration of parametric down-conversion source-based quantum key distribution over 40 dB channel loss. Opt. Express 26, 25921 (2018)

    Article  ADS  Google Scholar 

  29. Mao, C.C., Zhou, X.Y., Zhu, J.R., Zhang, C.H., Zhang, C.M., Wang, Q.: Improved statistical fluctuation analysis for measurement-device-independent quantum key distribution with four-intensity decoy-state method. Opt. Express 26, 13289 (2018)

    Article  ADS  Google Scholar 

  30. Agarwal, G.S.: Generation of pair coherent states and squeezing via the competition of four-wave mixing and amplified spontaneous emission. Phys. Rev. Lett. 57, 827 (1986)

    Article  ADS  Google Scholar 

  31. Zou, X.B., Pahlke, K., Mathis, W.: Creating the multidimensional entangled coherent states of two cavity modes. Eur. Phys. J. D 33, 297 (2005)

    Article  ADS  Google Scholar 

  32. Dong, Y.L., Zou, Y.L., Guo, G.C.: Generation of pair coherent state using weak cross-Kerr media. Phys. Lett. A 372, 5677 (2008)

    Article  ADS  Google Scholar 

  33. Zhang, S.L., Zou, X.B., Li, K., Jin, C.H., Guo, G.C.: Limitation of decoy-state Scarani–Acin–Ribordy–Gisin quantum-key-distribution protocols with a heralded single-photon source. Phys. Rev. A 76, 044304 (2007)

    Article  ADS  Google Scholar 

  34. Dong, C., Zhao, S.H., Shi, L.: Measurement device-independent quantum key distribution with heralded pair coherent state. Quantum Inf. Process. 15, 4253 (2016)

    Article  ADS  Google Scholar 

  35. Zhou, Y.H., Yu, Z.Y., Wang, X.B.: Tightened estimation can improve the key rate of measurement-device-independent quantum key distribution by more than 100%. Phys. Rev. A 89, 052325 (2014)

    Article  ADS  Google Scholar 

  36. Curty, M., Xu, F.H., Cui, W.: Finite-key analysis for measurement-device-independent quantum key distribution. Nat. Commun. 5, 3732 (2014)

    Article  ADS  Google Scholar 

  37. Hu, X.L., Zhou, Y.H., Yu, Z.W., Wang, X.B.: Practical measurement-device-independent quantum key distribution without vacuum sources. Phys. Rev. A 95, 032331 (2017)

    Article  ADS  Google Scholar 

  38. Hu, X.L., Yu, Z.W., Wang, X.B.: Efficient measurement-device-independent quantum key distribution without vacuum sources. Phys. Rev. A 98, 032303 (2018)

    Article  ADS  Google Scholar 

Download references

Funding

National Key Research and Development Program of China (Grants No. 2018YFA0306400, 2017YFA0304100); National Natural Science Foundation of China (Grants No. 11774180, 61590932, 61705110, 11847215); China Postdoctoral Science Foundation (Grant No. 2018M642281); Postgraduate Research and Practice Innovation Program of Jiangsu Province (Grant No. 46002CX17792).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qin Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, CC., Zhang, CH., Zhang, CM. et al. Improving the performance of four-intensity decoy-state measurement-device-independent quantum key distribution via heralded pair-coherent sources. Quantum Inf Process 18, 290 (2019). https://doi.org/10.1007/s11128-019-2404-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-019-2404-5

Keywords

Navigation