Skip to main content
Log in

Unified quantum no-go theorems and transforming of quantum pure states in a restricted set

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The linear superposition principle in quantum mechanics is essential for several no-go theorems such as the no-cloning theorem, the no-deleting theorem and the no-superposing theorem. In this paper, we investigate general quantum transformations forbidden or permitted by the superposition principle for various goals. First, we prove a no-encoding theorem that forbids linearly superposing of an unknown pure state and a fixed pure state in Hilbert space of a finite dimension. The new theorem is further extended for multiple copies of an unknown state as input states. These generalized results of the no-encoding theorem include the no-cloning theorem, the no-deleting theorem and the no-superposing theorem as special cases. Second, we provide a unified scheme for presenting perfect and imperfect quantum tasks (cloning and deleting) in a one-shot manner. This scheme may lead to fruitful results that are completely characterized with the linear independence of the representative vectors of input pure states. The upper bounds of the efficiency are also proved. Third, we generalize a recent superposing scheme of unknown states with a fixed overlap into new schemes when multiple copies of an unknown state are as input states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. It can be equivalently obtained from \(\mathrm{Tr}(\mathcal{U}(|\Omega _i\rangle )\mathcal{U}(|\Omega _j\rangle ))=\mathrm{Tr}(|\psi _i\rangle \langle \psi _i|^{\otimes k}\times |{\psi _j}\rangle \langle \psi _j|^{\otimes k})=|a_{ij}|^{2k}\), where \(|\Omega _{i}\rangle =|\psi _i\rangle ^{\otimes k}\otimes |\Sigma \rangle \otimes |P_0\rangle \), \(|\Omega _{j}\rangle =|\psi _j\rangle ^{\otimes k}\otimes |\Sigma \rangle \otimes |P_0\rangle \) and \(a_{ij}=\langle \psi _i|\psi _j\rangle \).

  2. For linearly independent vectors \(|\psi _1\rangle , |\psi _1\rangle , \ldots , |\psi _m\rangle \), there exists a vector \(|\tilde{\psi }\rangle \) such that \(\langle \psi _i|\tilde{\psi }\rangle =c\), \(i=1, 2, \ldots , m\).

References

  1. Wootters, W.K., Zurek, W.H.: A single quantum cannot be cloned. Nature 299, 802 (1982)

    Article  ADS  MATH  Google Scholar 

  2. Barnum, H., Caves, C.M., Fuchs, C.A., Jozsa, R., Schumacher, B.: Noncommuting mixed states cannot be broadcast. Phys. Rev. Lett. 76, 2818 (1996)

    Article  ADS  Google Scholar 

  3. Shor, P.W.: Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52, R2493(R) (1995)

    Article  ADS  Google Scholar 

  4. Steane, A.: Multiple particle interference and quantum error correction. Proc. R. Soc. Lond. A 452, 2551 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, p. 175. New York, (1984)

  6. Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85, 441 (2000)

    Article  ADS  Google Scholar 

  7. Lo, H.-K., Chau, H.F.: Unconditional security of quantum key distribution over arbitrarily long distances. Science 283, 2050–2056 (1999)

    Article  ADS  Google Scholar 

  8. Cerf, N.J., Bourennane, M., Karlsson, A., Gisin, N.: Security of quantum key distribution using \(d\)-level systems. Phys. Rev. Lett. 88(12), 127902 (2002)

    Article  ADS  Google Scholar 

  9. Scarani, V., Bechmann-Pasquinucci, H., Cerf, N.J., Dužek, M., Lütkenhaus, N., Peev, M.: The security of practical quantum key distribution. Rev. Mod. Phys. 81(3), 1301 (2009)

    Article  ADS  Google Scholar 

  10. Pati, A.K., Braunstein, S.L.: Impossibility of deleting an unknown quantum state. Nature 404, 104 (2000)

    Google Scholar 

  11. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, New York (2001)

    MATH  Google Scholar 

  12. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. In: Proceedings of the 35th Annual Symposium on Foundations of Computer Science, Santa Fe, 20–22 November 1994

  13. Grover, LK.: A fast quantum mechanical algorithm for database search. In: Proceedings of 28th Annual ACM Symposium on the Theory of Computing, pp. 212–219, Philadelphia, Pennsylvania, 22–24 May 1996

  14. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74, 145 (2002)

    Article  ADS  MATH  Google Scholar 

  15. Giovannetti, V., Lloyd, S., Maccone, L.: Advances in quantum metrology. Nat. Photonics 5, 222 (2011)

    Article  ADS  Google Scholar 

  16. Aaronson, S., Arkhipov, A.: The computational complexity of linear optics. Theory Comput. 9, 143–252 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Oszmaniec, M., Grudka, A., Horodecki, M., Wójcik, A.: Creating a superposition of unknown quantum states. Phys. Rev. Lett. 116, 110403 (2016)

    Article  ADS  Google Scholar 

  18. Alvarez-Rodriguez, U., Sanz, M., Lamata, L., Solano, E.: The forbidden quantum adder. Sci. Rep. 5, 11983 (2015)

    Article  ADS  Google Scholar 

  19. Pati, A.K.: General impossible operations in quantum information. Phys. Rev. A 66, 062319 (2002)

    Article  ADS  Google Scholar 

  20. Bužek, V., Hillery, M.: Quantum copying: beyond the no-cloning theorem. Phys. Rev. A 54, 1844 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  21. Gisin, N., Massar, S.: Optimal quantum cloning machines. Phys. Rev. Lett. 79, 2153 (1997)

    Article  ADS  Google Scholar 

  22. Bruß, D., DiVincenzo, D.P., Ekert, A., Fuchs, C.A., Macchiavello, C., Smolin, J.A.: Optimal universal and state-dependent quantum cloning. Phys. Rev. A 57, 2368 (1998)

    Article  ADS  Google Scholar 

  23. Bruß, D., Ekert, A., Macchiavello, C.: Universal optimal cloning of arbitrary quantum states: from qubits to quantum registers. Phys. Rev. Lett. 81, 2598 (1998)

    Article  ADS  Google Scholar 

  24. Kang, P., Dai, H.-Y., Wei, J.-H., Zhang, M.: Optimal quantum cloning based on the maximin principle by using a priori information. Phys. Rev. A 94, 042304 (2016)

    Article  ADS  Google Scholar 

  25. Bužek, V., Hillery, M.: Universal optimal cloning of arbitrary quantum states: from qubits to quantum registers. Phys. Rev. Lett. 81, 5003 (1998)

    Article  ADS  Google Scholar 

  26. Werner, R.F.: Optimal cloning of pure states. Phys. Rev. A 58, 1827 (1998)

    Article  ADS  Google Scholar 

  27. Zavatta, A., Fiurasek, J., Bellini, M.: A high-fidelity noiseless amplifier for quantum light states. Nat. Photonics 5, 52 (2011)

    Article  ADS  Google Scholar 

  28. Wang, Y.N., Shi, H.D., Xiong, Z.X., Jing, L., Ren, X.J., Mu, L.Z., Fan, H.: Unified universal quantum cloning machine and fidelities. Phys. Rev. A 84, 034302 (2011)

    Article  ADS  Google Scholar 

  29. Niu, C.S., Griffiths, R.B.: Optimal copying of one quantum bit. Phys. Rev. A 58, 4377 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  30. Cerf, N.J.: Pauli cloning of a quantum bit. Phys. Rev. Lett. 84, 4497 (2000)

    Article  ADS  Google Scholar 

  31. Bužek, V., Hillery, M., Bednik, R.: Controlling the flow of information in quantum cloners: asymmetric cloning. Acta Phys. Slovaca 48, 177 (1998)

    Google Scholar 

  32. Iblisdir, S., Acín, A., Gisin, N.: Generalised asymmetric quantum cloning, arXiv:quant-ph/0505152v1 (2005)

  33. Cwiklinski, P., Horodecki, M., Studzinski, M.: Region of fidelities for a \(1\rightarrow N\) universal qubit quantum cloner. Phys. Lett. A 376, 2178 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  34. D’Ariano, G.M., Macchiavello, C., Perinotti, P.: Superbroadcasting of mixed states. Phys. Rev. Lett. 95, 060503 (2005)

    Article  Google Scholar 

  35. Chen, L., Chen, Y.X.: Mixed qubits cannot be universally broadcast. Phys. Rev. A 75, 062322 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  36. Dang, G.F., Fan, H.: Optimal broadcasting of mixed states. Phys. Rev. A 76, 022323 (2007)

    Article  ADS  Google Scholar 

  37. Scarani, V., Iblisdir, S., Gisin, N.: Quantum cloning. Rev. Mod. Phys. 77, 1225–1256 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Fan, H., Wang, Y.-N., Jing, L., Yue, J.-D., Shi, H.-D., Zhang, Y.-L., Mu, L.-Z.: Quantum cloning machines and the applications. Phys. Rep. 544, 241–322 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  39. De Martini, F., Mussi, V., Bovino, F.: Schroedinger cat states and optimum universal quantum cloning by entangled parametric amplification. Opt. Commun. 179, 581 (2000)

    Article  ADS  Google Scholar 

  40. Linares, A.L., Simon, C., Howell, J.C., Bouwmeester, D.: Experimental quantum cloning of single photons. Science 296, 712–714 (2002)

    Article  ADS  Google Scholar 

  41. Du, J., Durt, T., Zou, P., Li, H., Kwek, L.C., Lai, C.H., Oh, C.H., Ekert, A.: Experimental quantum cloning with prior partial information. Phys. Rev. Lett. 94, 040505 (2005)

    Article  ADS  Google Scholar 

  42. Zhao, Z., Zhang, A.N., Zhou, X.Q., Chen, Y.A., Lu, C.Y., Karlsson, A., Pan, J.W.: Experimental realization of optimal asymmetric cloning and telecloning via partial teleportation. Phys. Rev. Lett. 95, 030502 (2005)

    Article  ADS  Google Scholar 

  43. Nagali, E., Sansoni, L., Sciarrino, F., Martini, F.D., Marrucci, L., Piccirillo, B., Karimi, E., Santamato, E.: Optimal quantum cloning of orbital angular momentum photon qubits through Hong-Ou-Mandel coalescence. Nat. Photonics 3, 720–723 (2009)

    Article  ADS  Google Scholar 

  44. Haw, J.Y., Zhao, J., Dias, J., Assad, S.M., Bradshaw, M., Blandino, R., Symul, T., Ralph, T.C., Lam, P.K.: Surpassing the no-cloning limit with a heralded hybrid linear amplifier for coherent states. Nat. Commun. 7, 13222 (2016)

    Article  ADS  Google Scholar 

  45. Wang, W.-B., Zu, C., He, L., Zhang, W.-G., Duan, L.-M.: Memory-built-in quantum cloning in a hybrid solid-state spin register. Sci. Rep. 5, 12203 (2015)

    Article  ADS  Google Scholar 

  46. Zhu, M.-Z., Liu, Y.: Implementing phase-covariant cloning in circuit quantum electrodynamics. Ann. Phys. 373, 512–520 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  47. Duan, L.M., Guo, G.C.: A probabilistic cloning machine for replicating two non-orthogonal states. Phys. Lett. A 243, 261 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. Duan, L.M., Guo, G.C.: Probabilistic cloning and identification of linearly independent quantum states. Phys. Rev. Lett. 80, 4999 (1998)

    Article  ADS  Google Scholar 

  49. Chefles, A., Barnett, S.M.: Quantum state separation, unambiguous discrimination and exact cloning. J. Phys. A 31, 10097 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  50. Chefles, A.: Unambiguous discrimination between linearly independent quantum states. Phys. Lett. A 239, 339–347 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  51. Chefles, A., Jozsa, R., Winter, A.: On the existence of physical transformations between sets of quantum states. Int. J. Quantum Inf. 02, 11–21 (2004)

    Article  MATH  Google Scholar 

  52. Matthews, W., Wehner, S., Winter, A.: Distinguishability of quantum states under restricted families of measurements with an application to quantum data hiding. Commun. Math. Phys. 291, 813 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  53. Pati, A.K.: Quantum superposition of multiple clones and the novel cloning machine. Phys. Rev. Lett. 83, 2849 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  54. Feng, Y., Zhang, S., Ying, M.: Probabilistic cloning and deleting of quantum states. Phys. Rev. A 65, 042324 (2002)

    Article  ADS  Google Scholar 

  55. Riesz, F.C.: Démonstration nouvelle d’un théoréme concernant les opérations fonctionnelles linéaires. R. Acad. Sci. Paris. 149, 974–977 (1909)

    Google Scholar 

  56. Stinespring, W.F.: Positive functions on \(C^*\)-algebras. Proc. Am. Math. Soc. 6, 211–216 (1955)

    MathSciNet  MATH  Google Scholar 

  57. Choi, M.-D.: Completely positive linear maps on complex matrices. Linear Algebra Appl. 10, 285–290 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  58. Horn, R.A., Johnson, C.R.: Matrix Analysis, 2nd edn. Cambridge University Press, Cambridge (2013)

    MATH  Google Scholar 

Download references

Acknowledgements

We thank the comments of reviewers. We thank the help of Luming Duan and M. Orgun. This work was supported by the National Natural Science Foundation of China (Nos. 61772437, 61702427), Sichuan Youth Science and Technique Foundation (No. 2017JQ0048), Fundamental Research Funds for the Central Universities (No. XDJK2016C043), Chuying Fellowship, the Doctoral Program of Higher Education (No. SWU115091) and EU ICT COST CryptoAction (No. IC1306).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-Xing Luo.

Additional information

Partially results have been announced as a poster in QIP 2017, Westin Seattle, 2017.

Appendices

Appendix A: Completing proof of the Theorem 1

Assume that there exists a unitary map \(\mathcal{U}\) with the matrix representative U satisfying Eq. (3) for all unknown states \(|{\psi }\rangle \) in Hilbert space \({\mathbb {H}}\). For two basis states \(|0\rangle \) and \(|1\rangle \), it follows that

$$\begin{aligned} U\times (|0\rangle \otimes |\Sigma \rangle \otimes |P_0\rangle )\propto & {} \sqrt{p_0}|0\rangle \otimes |\Sigma _0\rangle \otimes |P_1\rangle +\sqrt{p_1}|{{\Phi }_0}\rangle , \end{aligned}$$
(47)
$$\begin{aligned} U\times (|1\rangle \otimes |\Sigma \rangle \otimes |P_0\rangle )\propto & {} \sqrt{p'_0}|{\chi '}\rangle \otimes |{\Sigma _1}\rangle \otimes |{P_1}\rangle +\sqrt{p'_1}{{\Phi }_1}\rangle , \end{aligned}$$
(48)

where \(|\chi '\rangle =\alpha |1\rangle +\beta |0\rangle \). \(|{\Sigma }_0\rangle \) and \(|{\Sigma }_1\rangle \) are the output states of the ancillary system and generally depend on the input states.

For any state \(|\psi \rangle = a|0\rangle +b|1\rangle \) (a and b satisfy \(|a|^2+|b|^2=1\)), we obtain

$$\begin{aligned} U\times (|\psi \rangle \otimes |{\Sigma }\rangle \otimes |P_0\rangle ) \propto \sqrt{p''_0}|\varphi _1\rangle \otimes |\Sigma _2\rangle \otimes |P_1\rangle +\sqrt{p''_1}|{\Phi }_2\rangle \end{aligned}$$
(49)

where \(|\varphi _1\rangle =\sqrt{r''}({\alpha }|\psi \rangle +{\beta }|0\rangle )\) and \(r''\) is a normalization constant, and \(|\Sigma _2\rangle \) is the output state of the ancillary system. Moreover, from the linearity of quantum operations and Eqs. (47) and (47), we obtain

$$\begin{aligned} U \times ( |\psi \rangle \otimes |\Sigma \rangle \otimes |P_0\rangle ) \propto |\Psi \rangle \otimes |P_1\rangle +a\sqrt{p_1}|{\Phi }_0\rangle +b\sqrt{p'_1}|{\Phi }_1\rangle \end{aligned}$$
(50)

where \(|\Psi \rangle =a\sqrt{p_0}|0\rangle \otimes |{\Sigma }_0\rangle +b\sqrt{p'_0}|\chi '\rangle \otimes |\Sigma _1\rangle \). Let \(|{\Sigma }_i\rangle =a_i|0\rangle +b_i|1\rangle \) with \(|a_i|^2+|b_i|^2=1\), \(i=1, 2, 3\). From Eqs. (49) and (50), we obtain \(a=0\), which is a contradiction to \(|\psi \rangle \) in Eq. (49) with arbitrary a and b of \(|a|^2+|b|^2=1\).

Appendix B: Proof of Theorem 3

Similar to the proof of Theorem 2, we only need to prove the result for \(0<|\beta |<1\). In detail, for \(0<|\beta |<1\) assume that there exists a unitary map \(\mathcal{U}\) with the matrix representative U for all the states \(|\psi \rangle \) in Hilbert space \({\mathbb {H}}\) such that

$$\begin{aligned} U\times (|\psi \rangle ^{\otimes k}\otimes |\Sigma \rangle \otimes |P_0\rangle ) \propto \sqrt{p_0}|\varphi \rangle ^{\otimes n}\otimes |G\rangle \otimes |P_1\rangle +\sqrt{p_1}|\Phi \rangle \end{aligned}$$
(51)

where \(|\varphi \rangle =\sqrt{r}(\alpha |\psi \rangle +\beta |\phi \rangle )\) and r is a normalization constant. \(|\Sigma \rangle \) is an ancillary state in Hilbert space \({\mathbb {H}}_a={\mathbb {H}}^m\) with \(m>n\). \(|G\rangle \) is an ancillary state in Hilbert space \({\mathbb {H}}^{m+k-n}\), which may generally depend on the input state \(|\varphi \rangle \). \(|P_0\rangle \) and \(|P_1\rangle \) are two states in Hilbert space \({\mathbb {H}}_p\) with \(\mathrm{dim}({\mathbb {H}}_p)\gg 2\). Theses two states are independent of the input states. Let \(e^{i\theta }|\varphi \rangle \) be a new state. From Eq. (51) it follows that

$$\begin{aligned} U\times (e^{i\theta }|\psi \rangle ^{\otimes k}\otimes |\Sigma \rangle \otimes |P_0\rangle )\propto & {} \sqrt{p_0} |\varphi '\rangle ^{\otimes n}\otimes |G'\rangle \otimes |P_0\rangle +\sqrt{p_1}|\Phi '\rangle \end{aligned}$$
(52)

where \(|\varphi '\rangle =\sqrt{r'}(\sqrt{\alpha }e^{i\theta }|\varphi \rangle +\sqrt{\beta }|\phi \rangle )\) and \(r'\) is a normalization constant. \(|G'\rangle \) is another ancillary state in Hilbert space \({\mathbb {H}}^{m+k-n}\). Note that \(|\psi \rangle \propto e^{i\theta }|\psi \rangle \), i.e., the pure state \(e^{i\theta }|\psi \rangle \) is physically undiscriminating from the pure state \(|\psi \rangle \). From Eq. (51), it follows that

$$\begin{aligned} U\times (e^{i\theta }|\psi \rangle ^{\otimes k}\otimes |\Sigma \rangle \otimes |P_0\rangle )\propto U\times (|\psi \rangle ^{\otimes k}\otimes |\Sigma \rangle \otimes |P_0\rangle ). \end{aligned}$$
(53)

From Eqs. (52) and (53), we obtain \(|\varphi \rangle ^{\otimes n}\otimes |G\rangle \propto |\varphi '\rangle ^{\otimes n}\otimes |G'\rangle \) which yields to \(|\beta |=0\) or \(|\beta |=1\). This is a contradiction to \(0<|\beta |<1\) in Eq. (51).

Appendix C: The proof of inequality (26)

From Eq. (22) and the triangle inequality, we obtain

$$\begin{aligned} |a_{ij}|^k\le & {} \sum _{s=1}^{M+k}\sqrt{p_{is}p_{js}}(\sqrt{r_{is}r_{js}} |\alpha _{is}\alpha _{js}|\times |a_{ij}|^s +|\alpha _{is}\beta _{js}\lambda _{ij,s}|\nonumber \\&+|\beta _{is}\alpha _{js}\lambda _{ji,s}| +|\beta _{is}\beta _{js}|) +\sum _{\ell =M+k+1}^N\sqrt{q_{i\ell }q_{j\ell }}. \end{aligned}$$
(54)

Note that for all the complex constants \(\alpha _{is}, \beta _{js}\) with \(|\alpha _{is}|, |\beta _{js}|\le 1\), we have \(|\alpha _{is}\beta _{js} \lambda _{ij,s}|+|\beta _{is}\alpha _{js}\lambda _{ji,s}|\le \max \{|\lambda _{ij,s}|,|\lambda _{ji,s}|\} \times (|\alpha _{is}\beta _{js}|+|\beta _{is}\alpha _{js}|)\), and \(|\alpha _{is}\beta _{js}|+|\beta _{is}\alpha _{js}| \le \frac{1}{2}( |\alpha _{is}|^2+|\beta _{js}|^2 +|\beta _{is}|^2+|\alpha _{js}|^2)=1\) from the equalities \(|\alpha _{is}|^2+|\beta _{is}|^2=|\alpha _{js}|^2+|\beta _{js}|^2=1\). Hence, from the arithmetic-geometric average inequality, Eq. (54) reduces to

$$\begin{aligned} |a_{ij}|^k\le \sum _{s=1}^{M+k}{p}_{ij,s}\left( \max \{|\lambda _{ij,s}|,|\lambda _{ji,s}|\} +\alpha _{ij,s}{r}_{ij,s}|a_{ij}|^s+\beta _{ij,s}-1\right) +1, \end{aligned}$$
(55)

where \({p}_{ij,s}=(p_{is}+p_{js})/2\), \(\alpha _{ij,s}=|\alpha _{is}\alpha _{js}|\), \(\beta _{ij,s}=|\beta _{is}\beta _{js}|\) and \({r}_{ij,s}=\sqrt{r_{is}r_{js}}\), and we have taken use of the equalities \(\sum _{s=1}^{M+k}p_{is}+\sum _{\ell =M+k+1}^N q_{i\ell }=1\), \(i=1, 2, \ldots , m\). Denote \(D_{ij,t}:=2(1-|a_{ij}|^t)\) with \(t=k\) or s. Since \(1-\beta _{ij,s} \ge \alpha _{ij,s}\) for \(|\alpha _{is}|^2+|\beta _{is}|^2=|\alpha _{js}|^2+|\beta _{js}|^2=1\), Eq. (55) yields to inequality (26).

Appendix D: The proof of inequality (33)

From Eq. (29) we obtain

$$\begin{aligned} |a_{i_1j_1}a_{i_2j_2}|\le & {} \sqrt{p_{i_1i_2}p_{j_1j_2}} \sqrt{r_{i_1i_2}r_{j_1j_2}} \times (|\alpha _{i_1}\alpha _{j_1}a_{i_1j_1}|+|\beta _{i_2}\beta _{j_2}a_{i_2j_2}| \nonumber \\&+|\alpha _{i_1}\beta _{j_2}a_{i_1j_2}|+|\beta _{i_2}\alpha _{j_1}a_{i_2j_1}| ) +\sqrt{q_{i_ii_2}q_{j_1j_2}} \nonumber \\\le & {} \frac{1}{3}\sqrt{p_{i_1i_2}p_{j_1j_2}} \sqrt{r_{i_1i_2}r_{j_1j_2}} \times (2|\alpha _{i_1}|^2 +2|\alpha _{j_1}|^2 +2|\beta _{j_2}|^2 +2|\beta _{i_2}|^2 \nonumber \\&+|a_{i_1j_1}|+|a_{i_2j_2}| +|a_{i_2j_1}|+|a_{i_1j_2}|) +\sqrt{q_{i_ii_2}q_{j_1j_2}} \nonumber \\\le & {} \frac{1}{3}\sqrt{p_{i_1i_2}p_{j_1j_2}} \sqrt{r_{i_1i_2}r_{j_1j_2}} \times (|a_{i_1j_1}|+|a_{i_2j_2}| +|a_{i_2j_1}| \nonumber \\&+|a_{i_1j_2}|+4)+\sqrt{q_{i_ii_2}q_{j_1j_2}}, \end{aligned}$$
(56)

where the second inequality is derived from the inequality \(x^2+y^2+z\ge x^3+y^3+z^3\ge 3 xyz\) for \(0\le x,y,z\le 1\), and the last equality is derived from the equalities \(|\alpha _{i}|^2+|\beta _{i}|^2=1\), \(i=1, 2, \ldots , m\). By using the arithmetic inequality for \({p}_{i_ii_2}{p}_{j_1j_2}\) and \(q_{i_ii_2}q_{j_1j_2}\), Eq. (56) yields to inequality (33).

Appendix E: Proof of Theorem 7

Note that \(|\psi _1\rangle ^{\otimes k}\otimes |\psi _1\rangle ^{\otimes k}\), \(|\psi _1\rangle ^{\otimes k}\otimes |\psi _2\rangle ^{\otimes k}\), \(\ldots , |\psi _m\rangle ^{\otimes k}\otimes |\psi _m\rangle ^{\otimes k}\) are linearly dependent if and only if \(|\psi _1\rangle ^{\otimes k}, |\psi _2\rangle ^{\otimes k}, \ldots , |\psi _m\rangle ^{\otimes k}\) are linearly dependent. Similar to the proof of Theorem 5, the necessity is easily followed from the linearity of quantum operations and the superposition principle. Now, we prove that these CP maps will be presented in a unified form with a nontrivial probability in the following. In fact, from Stinespring dilation theorem [56], assume that there exists a unitary map \(\mathcal{U}\in \mathcal{SU}({\mathbb {H}}^k\otimes {\mathbb {H}}^k\otimes {\mathbb {H}}_a\otimes {\mathbb {H}}_p)\) with matrix representative U such that

$$\begin{aligned} U\times \left( |\psi _i\rangle ^{\otimes k}\otimes |{\psi _j}\rangle ^{\otimes k}\otimes |{\Sigma }\rangle \otimes |{P_0}\rangle \right)\propto & {} \sum _{s=1}^{M+2k}\sqrt{p_{ij,s}}|{\varphi _{ij,s}}\rangle \otimes |0\rangle \otimes ^{M+2k-s}|P_s\rangle \nonumber \\&+\sum ^N_{\ell =M+2k+1}\sqrt{q_{ij,\ell }}|{\Phi }_{ij,\ell }\rangle \otimes |P_\ell \rangle \end{aligned}$$
(57)

Here, \(|\Sigma \rangle \) is an ancillary state in Hilbert space \({\mathbb {H}}_a={\mathbb {H}}^M\) with \(M>\max \{k,s\}\). \(p_{ij,s}\) is the success probability of producing the desired state \(|\varphi _{ij,s}\rangle \). \(|P_0\rangle , |P_1\rangle , \ldots , |P_N\rangle \) are orthogonal states in an ancillary Hilbert space \({\mathbb {H}}_p\) with \(\mathrm{dim}({\mathbb {H}}_p)>N+1\). \(|{\Phi }_{ij,\ell }\rangle \) is a normalized failure state in \({\mathbb {H}}^{k}\otimes {\mathbb {H}}^{M}\) with the probability \(q_{ij,\ell }\) which satisfies \(\sum _{s=1}^{M+2k}p_{ij,s}+\sum _{\ell =M+2k+1}^Nq_{ij,\ell }=1\), \(i,j=1, 2, \ldots , m\). Each CP map \(\mathcal{F}_j\) is specified by the unitary mapping \(\mathcal{U}\) and the followed projector \(|P_j\rangle \langle P_j|\), \(j=1, 2, \ldots , M+k\).

For the input states \(|\psi _{i_1}\rangle ^{\otimes k}\otimes |\psi _{i_2}\rangle ^{\otimes k}\) and \(|\psi _{j_1}\rangle ^{\otimes k}\otimes |\psi _{j_2}\rangle ^{\otimes k}\), taking the inner product of the output states, it follows that

$$\begin{aligned} a_{i_1j_1}^{k}a_{i_2j_2}^{k}= & {} \sum _{s=1}^{M+2k}\sqrt{p_{i_1i_2,s}p_{j_1j_2,s} r_{i_1i_2,s}r_{j_1j_2,s}}h^{(s)}_{i_1i_2,j_2j_2}\nonumber \\&+\sum _{\ell =M+2k+1}^N \sqrt{q_{i_1i_2,\ell }q_{j_1j_2,\ell }}b_{i_1i_2,j_2j_2,\ell }, \end{aligned}$$
(58)

where \(a_{ij}=\langle \psi _i|\psi _j\rangle \), \(b_{i_1i_2,j_2j_2,\ell }=\langle \Phi _{i_1i_2,\ell }|\Phi _{j_1j_2,\ell }\rangle \), and \(h^{(s)}_{i_1i_2,j_2j_2}=\alpha ^*_{i_1i_2}\alpha _{j_1j_2}a^s_{i_1j_1} +\beta ^*_{i_1i_2}\beta _{j_1j_2}a^s_{i_2j_2} +\alpha ^*_{i_1i_2}\beta _{j_1j_2}a^s_{i_1j_2} +\beta ^*_{i_1i_2}\alpha _{j_1j_2}a^s_{i_2j_1}\) for all integers \(1\le i, j, i_1, i_2, j_1, j_2\le m\) and \(M+2k+1\le \ell \le N\). Eq. (58) may be briefly represented by a matrix equation:

$$\begin{aligned} A^{\circ k}=\sum _{s=1}^{M+2k}\Lambda _s\times B_s \times \Lambda _s^\dag + \sum _{\ell =M+2k+1}^{N}Q_\ell , \end{aligned}$$
(59)

where

$$\begin{aligned}&A=\left[ a_{i_1j_1}a^*_{i_2j_2} \right] _{m^2\times m^2},\quad \Lambda _s=\mathrm{diag}(p_{11,s}, p_{12,s}, \ldots , p_{mm,s})_{m^2\times m^2}, \\&H_s= \left[ \sqrt{r_{i_1i_2,s}r_{j_1j_2,s}}h^{(s)}_{i_1i_2,j_2j_2} \right] _{m^2\times m^2},\quad Q_\ell =\left[ \sqrt{q_{i_1i_2,\ell }q_{j_1j_2,\ell }}b_{i_1i_2,j_2j_2,\ell }\right] _{m^2\times m^2}, \end{aligned}$$

Here, the rows or columns of these matrices are represented by two-bit series \(i_1i_2\) or \(j_1j_2\), respectively. It is sufficient to prove Eq. (59) with physical realizable matrices \(Q_\ell \), \(\ell =M+2k+1, \ldots , L\). In fact, \(A^{\circ k}\) is positive definite from Theorem 4 because A is positive definite from the linear independence of \(|\psi _1\rangle ^{\otimes k}, |\psi _2\rangle ^{\otimes k}, \ldots , |\psi _m\rangle ^{\otimes k}\). The matrix \(\sum _{s=1}^{M+2k}\Lambda _s H_s \Lambda _s^\dag \) is Hermitian. From Lemma 1, the matrix \(A^{\circ k}-\sum _{s=1}^{M+2k}\Lambda _s B_s \Lambda _s^\dag \) is positive definite when matrices \(\Lambda _1, \Lambda _2, \ldots , \Lambda _{M+2k}\) satisfy the following inequality

$$\begin{aligned} \left\| \sum _{s=1}^{M+2k}\Lambda _s\times B_s \times \Lambda _s^\dag \right\| _2<\left\| (A^{\circ k})^{-1}\right\| _2^{-1} \end{aligned}$$
(60)

Therefore, there exists a unitary matrix V such that

$$\begin{aligned} V\times \left( A^{\circ k}-\sum _{s=1}^{M+2k}\Lambda _s\times B_s \times \Lambda _s^\dag \right) \times V^\dag =\mathrm{diag}(\lambda _{1}, \lambda _{2}, \ldots , \lambda _{m^2}) \end{aligned}$$
(61)

where \(\lambda _{1}, \lambda _{2}, \ldots , \lambda _{m^2}\) are all the eigenvalues of \(A^{\circ k}-\sum _{s=1}^{k_3}\Lambda _s \times H_s \times \Lambda _s^\dag \) and satisfy \(\lambda _j>0, j=1, 2, \ldots , m^2\). Define \(Q_\ell =V^\dag \times \mathrm{diag}(\lambda _{1,\ell }\), \(\lambda _{2,\ell }, \ldots , \lambda _{m^2,\ell })\times V\), where \(\lambda _{1,\ell }\), \(\lambda _{2,\ell }, \ldots , \lambda _{m^2,\ell }\) are positive constants and satisfy \(\sum _{\ell =M+2k+1}^NQ_\ell =\mathrm{diag}(\lambda _{1}, \lambda _{2}, \ldots , \lambda _{m^2})\). So, \(Q_\ell \) is positive definite and then physically realizable, \(\ell =M+2k+1, M+2k+2, \ldots , N\). This completes the proof. \(\square \)

In the following, the bound of the success probability is proved in terms of the state metric [49]. In detail, from Eq. (58) we obtain

$$\begin{aligned} |a_{i_1j_1}a_{i_2j_2}|^k\le & {} \sum _{s=1}^{M+2k}\sqrt{p_{i_1i_2,s}p_{j_1j_2,s}} \sqrt{r_{i_1i_2,s}r_{j_1j_2,s}} (|\alpha _{i_1i_2}\alpha _{j_1j_2}|\times |a_{i_1j_1}|^s\nonumber \\&+|\beta _{i_1i_2}\beta _{j_1j_2}|\times |a_{i_2j_2}|^s+|\beta _{i_1i_2}\alpha _{j_1j_2}|\times |a_{i_2j_1}|^s +|\alpha _{i_1i_2}\beta _{j_1j_2}|\times |a_{i_1j_2}|^s)\nonumber \\&+\sum _{\ell =M+2k+1}^N\sqrt{q_{i_1i_2,\ell }q_{j_1j_2,\ell }} \nonumber \\\le & {} \frac{1}{3}\sum _{s=1}^{M+2k}\sqrt{p_{i_1i_2,s}p_{j_1j_2,s}} \sqrt{r_{i_1i_2,s}r_{j_1j_2,s}} \left[ 2|\alpha _{i_1i_2}|^2+2|\alpha _{j_1j_2}|^2 +2|\beta _{i_1i_2}|^2\right. \nonumber \\&\left. +2|\beta _{j_1j_2}|^2 +|a_{i_1j_1}|^s+|a_{i_1j_2}|^s+|a_{i_2j_1}|^s+|a_{i_2j_2}|^s \right] \nonumber \\&+\sum _{\ell =M+2k+1}^N\sqrt{q_{i_1i_2,\ell }q_{j_1j_2,\ell }} \nonumber \\= & {} \frac{1}{3}\sum _{s=1}^{M+2k}\sqrt{p_{i_1i_2}p_{j_1j_2}} \sqrt{r_{i_1i_2}r_{j_1j_2}} (|a_{i_1j_1}|^s+|a_{i_2j_2}|^s\nonumber \\&+|a_{i_2j_1}|^s+|a_{i_1j_2}|^s+4)+\sum _{\ell =M+2k+1}^N\sqrt{q_{i_1i_2,\ell }q_{j_1j_2,\ell }}, \end{aligned}$$
(62)

where the second inequality is derived from the inequality \(x^2+y^2+z\ge x^3+y^3+z^3\ge 3 xyz\) for \(0\le x,y,z\le 1\), and the last equality is derived from the equalities \(|\alpha _{ij}|^2+|\beta _{ij}|^2=1\) for any integers \(1\le i, j\le m\) and \(1\le s\le M+2k\).

By using the arithmetic inequality for \(p_{i_1i_2,s}p_{j_1j_2,s}\) and \(q_{i_1i_2,s}q_{j_1j_2,s}\), and the equality \(\sum _{s=1}^{M+2k}p_{ij,s}+\sum _{\ell =M+2k+1}^Nq_{ij,\ell }=1\) for all \(i,j=1, 2, \ldots , m\), Eq. (62) leads to

$$\begin{aligned} D_{i_1j_1,k}D_{i_2j_2,k}\le & {} \frac{2}{3}\sum _{s=1}^{M+2k}p_{i_1i_2,j_1j_2,s} \left[ r_{i_1i_2,j_1j_2}\left( 16-D_{i_1j_1,s}\right. \right. \nonumber \\&\left. \left. -D_{i_1j_2,s}-D_{i_2j_2,s} -D_{i_2j_1,s}\right) -6\right] \nonumber \\&+4D_{i_1j_1,k}+4D_{i_2j_2,k}, \end{aligned}$$
(63)

where \(r_{i_1i_2,j_1j_2}=\sqrt{r_{i_1i_2,s}r_{j_1j_2,s}}\), \(p_{i_1i_2,j_1j_2,s}=(p_{i_1i_2,s}+p_{j_1j_2,s})/2\) and \(D_{ij,s}=2(1-|a_{ij}|^s)\). The inequality has generalized the bound in Eq. (33).

Appendix F: Proof of the uniqueness of Theorem 8

In this appendix, we complete the proof of Theorem 8 according to the proof [17]. Let \(|v\rangle =\sqrt{c}(\sqrt{c_1}|0\rangle +\sqrt{c_2}|1\rangle )\) be an ancillary vector and \(|\psi \rangle \) and \(|\phi \rangle \) be states in \({\mathbb {H}}\), \(|X\rangle \in {\mathbb {H}}^{3}\) satisfy the conditions

$$\begin{aligned} \mathrm{Tr}(|X\rangle \langle X|\times (|{\psi }\rangle \langle \psi |\otimes |\phi \rangle \langle \phi |\otimes |\psi \rangle \langle \psi |))= & {} c_1>0, \nonumber \\ \mathrm{Tr}(|X\rangle \langle X|\times (|{\phi }\rangle \langle \phi |\otimes |\psi \rangle \langle \psi |\otimes |\phi \rangle \langle \phi |))= & {} c_2>0. \end{aligned}$$
(64)

Let \(\mathcal{F}\in \mathcal{CP}({\mathbb {C}}^2\otimes {\mathbb {H}}^{2}\otimes {\mathbb {H}}^{2},{\mathbb {H}})\) be a CP map satisfying

$$\begin{aligned} \mathcal{F}(|\mu \rangle \otimes |{\psi }\rangle ^{\otimes 2}\otimes |{\phi }\rangle ^{\otimes 2})\propto |{\varphi }\rangle , \end{aligned}$$
(65)

where \(|\varphi \rangle \) is given by

$$\begin{aligned} |\varphi \rangle = \sqrt{r}(\alpha e^{i\theta _1} |\psi \rangle + \beta e^{i\theta _2}|\phi \rangle ) \end{aligned}$$

and r is a normalization constant dependent of \(\alpha , \beta , |\psi \rangle \) and \(|\phi \rangle \), \(e^{i\theta _1}=\frac{\langle X|\phi \rangle \otimes |\psi \rangle \otimes |\phi \rangle }{|\langle X|\phi \rangle \otimes |\psi \rangle \otimes |\phi \rangle |}\) and \(e^{i\theta _2}=\frac{\langle X|\psi \rangle \otimes |\phi \rangle \otimes |\psi \rangle }{|\langle X|\psi \rangle \otimes |\phi \rangle \otimes |\psi \rangle |}\). Let \(\{F_i|F_i:{\mathbb {C}}^2\otimes {\mathbb {H}}^{4}\rightarrow {\mathbb {H}}\}_{i\in J}\), form the Kraus decomposition of \(\mathcal{F}\). Using the analogous procedure to Theorem 1 [17], we get

$$\begin{aligned} F_i(|\mu \rangle \otimes |{\psi }\rangle ^{\otimes 2}\otimes |{\phi }\rangle ^{\otimes 2}) = |\varphi \rangle ,\quad \text{ for } \text{ all } i\in J \end{aligned}$$
(66)

up to a global normalization factor. Now consider the single Kraus operator \(F_i\). It follows that

$$\begin{aligned} F_i|\mu \rangle \otimes |\psi \rangle ^{\otimes 2}|\phi \rangle ^{\otimes 2} =a(\alpha e^{i\theta _1}|\psi \rangle +\beta e^{i\theta _2}|\phi \rangle ) \end{aligned}$$
(67)

for all vectors \(|\psi \rangle \), \(|\phi \rangle \in {\mathbb {H}}\) satisfying the condition in Eq. (64) and a constant a which is dependent of \(\alpha , \beta , |\psi \rangle \) and \(|\phi \rangle \). This definition is unique up to a global factor. In detail, from the linearity of the left side of Eq. (67), a is independent of \(\alpha \) and \(\beta \). Moreover, from the linearity of \(F_i\) and Eq. (67), it follows that

$$\begin{aligned}&a\left( |\psi \rangle ^{\otimes 2},|\phi \rangle ^{\otimes 2}\right) =a\left( e^{i\theta '_1}|\psi \rangle ^{\otimes 2},e^{i\theta '_2}|\phi \rangle ^{\otimes 2}\right) \end{aligned}$$
(68)

for arbitrary phases \(\theta '_i\). Hence, we can assume the following form

$$\begin{aligned} |\phi \rangle \otimes |\psi \rangle \otimes |\phi \rangle= & {} \sqrt{c_1}|X\rangle + \sqrt{d_1}|\Phi ^{\bot }\rangle , \end{aligned}$$
(69)
$$\begin{aligned} |\psi \rangle \otimes |\phi \rangle \otimes |\psi \rangle= & {} \sqrt{c_2}|X\rangle + \sqrt{d_2}|\Psi ^{\bot }\rangle , \end{aligned}$$
(70)

where \(|X\rangle \) is the vector representative of the state \(\rho _X\) and \(c_i+d_i=1\), \(|\Phi ^{\bot }\rangle \) and \(|\Psi ^{\bot }\rangle \) are normalized orthogonal complements of \(|X\rangle \). From Eq.(67), we obtain

$$\begin{aligned}&F_i\otimes I\otimes I\left[ |\mu \rangle \otimes (\sqrt{c_1}|\tilde{X}\rangle +d_1|\tilde{\Phi }^{\bot }\rangle ) (\sqrt{c_2}|\tilde{X}\rangle +d_2|\tilde{\Psi }^{\bot }\rangle )\right] \nonumber \\&=\tilde{a}((\alpha \sqrt{c_1}+\beta \sqrt{c_2})|\tilde{X}\rangle +\alpha \sqrt{d_1}|\Psi ^{\bot }\rangle +\beta \sqrt{d_2}|\Phi ^{\bot }\rangle )\otimes |\phi \rangle \otimes |\psi \rangle , \end{aligned}$$
(71)

where the vectors \(|\tilde{X}\rangle =(S_{1,2}\otimes I)|X\rangle \), \(|\tilde{\Phi }^{\bot }\rangle =(S_{1,2}\otimes I)|{\Phi }^{\bot }\rangle \) and \(|\tilde{\Psi }^{\bot }\rangle =(S_{1,2}\otimes I)|{\Psi }^{\bot }\rangle \). For normalized vectors \(|\tilde{\Psi }^{\bot }\rangle \) and \(|\tilde{\Phi }^{\bot }\rangle \), the function

$$\begin{aligned} (\theta _1, \theta _2)\mapsto \tilde{a}\left( e^{i\theta _1}|\tilde{\Psi }^{\bot }\rangle , e^{i\theta _2}|\tilde{\Phi }^{\bot }\rangle \right) \end{aligned}$$
(72)

is a smooth function on \({\mathbb {S}}_1\times {\mathbb {S}}_1\), where \({\mathbb {S}}_1\) denotes the complex circle on \({\mathbb {C}}^2\). By inserting \(e^{i\theta _1}|\tilde{\Psi }^{\bot }\rangle \) and \(e^{i\theta _2}|\tilde{\Phi }^{\bot }\rangle \) in Eq. (72), from the Fourier transformation and the linearity of \(F_i\), it follows that

$$\begin{aligned} \tilde{a}\left( e^{i\theta _1}|\tilde{\Psi }^{\bot }\rangle , e^{i\theta _2}|\tilde{\Phi }^{\bot }\rangle \right) =\tilde{a}\left( |\tilde{\Psi }^{\bot }\rangle ,|\tilde{\Phi }^{\bot }\rangle \right) . \end{aligned}$$
(73)

Moreover, we obtain

$$\begin{aligned} (F\otimes I\otimes I)\times (|\mu \rangle \otimes |\tilde{X}\rangle \otimes |\tilde{X}\rangle )= & {} \tilde{a}\tilde{c}|\tilde{X}\rangle \otimes |\phi \rangle \otimes |\psi \rangle , \end{aligned}$$
(74)
$$\begin{aligned} (F\otimes I\otimes I)\times (|\mu \rangle \otimes |\tilde{\Phi }^\bot \rangle \otimes |\tilde{\Psi }^{\bot }\rangle )= & {} 0, \end{aligned}$$
(75)
$$\begin{aligned} (F\otimes I\otimes I)\times (|\mu \rangle \otimes |\tilde{\Phi }^\bot \rangle \otimes |\tilde{X}\rangle )= & {} \frac{\tilde{a}\alpha }{\sqrt{c_2}}|\tilde{\Phi }^\bot \rangle \otimes |\phi \rangle \otimes |\psi \rangle , \end{aligned}$$
(76)
$$\begin{aligned} (F\otimes I\otimes I)\times (|\mu \rangle \otimes |\tilde{X}\rangle \otimes |\tilde{\Psi }^\bot \rangle )= & {} \frac{\tilde{a}\beta }{\sqrt{c_2}}|\tilde{\Psi }^\bot \rangle \otimes |\phi \rangle \otimes |\psi \rangle \end{aligned}$$
(77)

where \(\tilde{c}=(\frac{\alpha }{\sqrt{c_2}}+\frac{\beta }{\sqrt{c_2}})\). From Eqs. (76) and (77), \(\tilde{a}\) should be independent of vectors \(|\tilde{\Phi }^\bot \rangle \) and \(|\tilde{\Psi }^\bot \rangle \). It means that \(\tilde{a}\) is a constant. Similar proof may be followed for the conditions in Eq. (64). This completes the proof. \({} \Box \)

The presented proof also holds for \(|\psi \rangle \) and \(|\phi \rangle \) satisfying \(\mathrm{Tr}(|X\rangle \langle X|\times (|{\phi }\rangle \langle \phi |\otimes |\psi \rangle \langle \psi |\otimes |\phi \rangle \langle \phi |))=\lambda c_1\) and \(\mathrm{Tr}(|X\rangle \langle X|\times (|{\psi }\rangle \langle \psi |\otimes |\phi \rangle \langle \phi |\otimes |\psi \rangle \langle \psi |))=\lambda c_2\), where \(\lambda \in (0, \frac{1}{\max \{c_1,c_2\}}]\). The superpositions are then generated with a probability \(p'=\lambda p\). From the uniqueness result, it is impossible to generate superpositions for all input states with a nonzero overlap with \(|{X}\rangle \).

We now present an explicit protocol to generate the superposition with a higher success probability [17]. Let \(\mathcal{G}(|\Phi \rangle \langle \Phi |)=G|\Phi \rangle \langle \Phi | G^\dag \), for a linear mapping \(\mathcal{G}:{\mathbb {H}}^{4}\rightarrow {\mathbb {H}}\) defined by \(G=G_2G_1\), where

$$\begin{aligned} G_1=\frac{\alpha }{\sqrt{c_1}}I\otimes I\otimes I\otimes I +\frac{\beta }{\sqrt{c_2}}S_{1,3}\otimes S_{2,4}, G_2=I\otimes \langle X|, \end{aligned}$$

\(S_{i,j}\) denotes the swapping operation of the ith and jth state in \({\mathbb {H}}\). The action of \(G_2\) on the tensor of \(|x_1\rangle \otimes |x_2\rangle \otimes |x_3\rangle \otimes |x_4\rangle \) is given

$$\begin{aligned} I\otimes \langle X|x_1\rangle \otimes |x_2\rangle \otimes |x_3\rangle \otimes |x_4\rangle =|x_1\rangle (\langle X|x_2\rangle \otimes |x_3\rangle \otimes |x_4\rangle ) \end{aligned}$$
(78)

for all \(\rho _{x_i}\in {\mathbb {H}}\). With forward evaluations, we can obtain

$$\begin{aligned} G\times \left( |\psi \rangle ^{\otimes 2}\otimes |\phi \rangle ^{\otimes 2}\right) =\alpha e^{i\theta _1}|\psi \rangle + \beta e^{i\theta _2}|\phi \rangle \end{aligned}$$
(79)

which shows that \(G\times (|\psi \rangle \otimes |\psi \rangle \otimes |\phi \rangle \otimes |\phi \rangle )= |\varphi \rangle \) up a global factor. \(\mathcal{G}\) is trace non-increasing if and only if \(GG^\dag \le I\otimes I\), i.e,

$$\begin{aligned} G^\dag \times G= & {} \frac{|\alpha |^2}{c_1}I\otimes |X\rangle \langle X| +\frac{|\beta |^2}{c_2} |X\rangle \langle X|\otimes I +\frac{\alpha \beta ^*}{\sqrt{c_1c_2}}I\otimes |X\rangle \langle X| (S_{1,3}\otimes S_{2,4}) \nonumber \\&+\frac{\alpha ^*\beta }{\sqrt{c_1c_2}}(S_{1,3}\otimes S_{2,4}) (I\otimes |X\rangle \langle X|) \end{aligned}$$
(80)

The maximal eigenvalue of \(G^\dag \times G\) is given by

$$\begin{aligned} \lambda _{max} =\max \left\{ \frac{|\beta |^2}{c_2}+\frac{|\alpha |^2}{2c_1} \left( \sqrt{\frac{4|\beta |^2}{c_2}+1}+1\right) , \left| \frac{\alpha }{\sqrt{c_1}}+\frac{\beta }{\sqrt{c_2}}\right| ^2\right\} . \end{aligned}$$
(81)

The largest \(x\in {\mathbb {R}}^+\) satisfying \(\tilde{\mathcal{F}}=x\cdot \mathcal{F}\) being non-increasing is \(1/\lambda _\mathrm{max}\). The success probability is

$$\begin{aligned} p_{s}=\mathrm{Tr}\left( \tilde{\mathcal{F}} (|\psi \rangle \langle \psi |^{\otimes 2}\times |{\phi }\rangle \langle \phi |^{\otimes 2})\right) = \frac{N^2_{\varphi }}{\lambda _\mathrm{max}}. \end{aligned}$$
(82)

Hence, \(\tilde{p}_{s}\ge p_{s}\) if and only if

$$\begin{aligned} \frac{1}{c_1}+\frac{1}{c_2}\ge \lambda _\mathrm{max} \end{aligned}$$
(83)

for \(c_{i}\in (0,1]\) and \(|\alpha |^2+|\beta |^2=1\).

Appendix G: Proof of Theorem 9

Define \(|v\rangle =\sqrt{c}(\sqrt{c_1}|0\rangle +\sqrt{c_2}|1\rangle )\), where c is a normalization constant. Given two permutations \(\tau _1, \tau _2\in {\mathbb {P}}_{2k-1}\), for all states \(|\Psi _{\tau _1(1,2,\cdots , 2k-1)}\rangle \) satisfying \(\mathrm{Tr}(|X\rangle \langle X|\times |\Psi _{\tau _1(1,2,\ldots , 2k-1)}\rangle \langle \Psi _{\tau _1(1,2,\ldots , 2k-1)}|)=c_1>0\) and states \(|\Phi _{{\tau }_2(1,2,\ldots , 2k-1)}\rangle \langle \Phi _{{\tau }_2(1,2,\ldots , 2k-1)}|\) satisfying \(\mathrm{Tr}(|X\rangle \langle X|\times |\Phi _{{\tau }_2(1,2,\ldots , 2k-1)}\rangle \langle \Phi _{{\tau }_2(1,2,\ldots ,} {2k-1)}|)=c_2>0\), we can define a CP map \(\mathcal{F}_{\tau _1,\tau _2}\) such that

$$\begin{aligned} \mathcal{F}_{\tau _1,\tau _2}\left( |\mu \rangle \otimes |{\psi }\rangle ^{\otimes k} \otimes |{\phi }\rangle ^{\otimes k}\right) \propto |{\varphi }\rangle , \end{aligned}$$
(84)

where \(|\varphi \rangle =\sqrt{r}(\alpha e^{i\theta _1}|\psi \rangle +\beta e^{i\theta _2}|\phi \rangle )\) with \(e^{i\theta _1}=\frac{\langle X|\Phi _{{\tau }_2(1,2,\cdots , 2k-1)}\rangle }{|\langle X|\Phi _{{\tau }_2(1,2,\cdots , 2k-1)}\rangle |}\) and \(e^{i\theta _2}=\frac{\langle X|\Psi _{\tau _1(1,2,\cdots , 2k-1)}\rangle }{|\langle X|\Psi _{\tau _1(1,2,\cdots , 2k-1)}\rangle |}\) and r is a normalized constant, and the vector \(|\mu \rangle \) is given by \(|\mu \rangle =\alpha |0\rangle +\beta |1\rangle \). Let

$$\begin{aligned} \mathcal{F}_{\tau _1,\tau _2}=\mathcal{F}_6\circ \mathcal{F}_5\circ \mathcal{F}_4\circ \mathcal{F}_3\circ \mathcal{F}_2\circ \mathcal{F}_1, \end{aligned}$$
(85)

where \(\mathcal{F}_j(|\Phi \rangle \langle \Phi |)=F_j|\Phi \rangle \langle \Phi |F^\dag _j, j=1,2,\ldots , 5\), \(\mathcal{F}_6(|\Phi \rangle \langle \Phi |)=\mathrm{Tr}_{1,3,4,\ldots , nk+1}(|\Phi \rangle \langle \Phi |)\), and

$$\begin{aligned} F_1= & {} |0\rangle \langle 0|\otimes I^{2k}+|1\rangle \langle 1|\otimes S_{2,k+2}\otimes I^{k-1}, \\ F_2= & {} |0\rangle \langle 0|\otimes I \otimes S_{\tau _1}+|1\rangle \langle 1| \otimes I^{2k}, \\ F_3= & {} |0\rangle \langle 0|\otimes I^{2k}+|1\rangle \langle 1|\otimes I \otimes S_{\tau _2} \\ F_4= & {} I_2\otimes I\otimes |X\rangle \langle X| , \\ F_5= & {} |v\rangle \langle v|\otimes I^{nk}, \end{aligned}$$

where \(I^j\) denotes the identity operator on \({\mathbb {H}}^j (j=1,2, \ldots , nk)\), \(I_2\) denotes the identity operator on \({\mathbb {C}}^2\), \(S_{\tau _i}\) is a swapping operator induced by the permutation \(\tau _i\) in \({\mathbb {P}}_{2k-1}\) and performed on the last \(2k-1\) subsystems, \(i=1, 2\). It is easy to get the result by forward evaluations from the input states \(|{v}\rangle \otimes |{\psi }\rangle ^{\otimes k}\otimes |{\phi }\rangle ^{\otimes k}\).

Appendix H: Proof of Corollary 4

Define an ancillary vector

$$\begin{aligned} |v\rangle =\sqrt{c}\left( \sum _{j=0}^{n-1}\frac{\sqrt{c_j}}{\prod _{j=0}^{n-1}\sqrt{c_j}}|j\rangle \right) , \end{aligned}$$
(86)

where c is a normalization constant. Let

$$\begin{aligned} \mathcal{F}=\mathcal{F}_5\circ \mathcal{F}_4\circ \mathcal{F}_3\circ \mathcal{F}_2\circ \mathcal{F}_1, \end{aligned}$$
(87)

where \(\mathcal{F}_j(|\Phi \rangle \langle \Phi |)\!=F_j|\Phi \rangle \langle \Phi |F^\dag _j, j\!=1,2,\cdots , 4\), \(\mathcal{F}_5(|\Phi \rangle \langle \Phi |)=\mathrm{Tr}_{1,3,4,\cdots , nk,nk+1}(|\Phi \rangle \langle \Phi |)\), and

$$\begin{aligned} F_1= & {} |0\rangle \langle 0|\otimes I^{nk}+\sum _{j=1}^{n-1}|j\rangle \langle j|\otimes S_{2,jk+2}, \\ F_2= & {} \sum _{j=0}^{n-1}|j\rangle \langle j|\otimes S_{\tau _j}, \\ F_3= & {} I_n\otimes I\otimes |X\rangle \langle X|, \\ F_4= & {} |v\rangle \langle v|\otimes I^{nk}, \end{aligned}$$

where \(I^j\) denotes the identity operator on Hilbert space \({\mathbb {H}}^j (j=1,2, \ldots , nk)\), \(I_n\) denotes the identity operator on \({\mathbb {C}}^2\), \(S_{\tau _j}\) is a swapping operator induced by the permutation \(\tau _j\) in \({\mathbb {P}}_{nk-1}\) and performed on the last \(nk-1\) subsystems, \(j=0, 1, \ldots , n-1\). \(F_1\) is used to change the vector \(|v\rangle \otimes (\otimes _{i=1}^n |\psi _i\rangle ^{\otimes k})\) into \(\sqrt{c}\sum _{j=0}^{n-1}\sqrt{c_j}|j\rangle \otimes |\psi _j\rangle \otimes |\Psi ^{j}_{1,2,\ldots , nk-1}\rangle \). \(F_2\) is used to change the vector \(\sqrt{c}\sum _{j=0}^{n-1}\sqrt{c_j}|j\rangle \otimes |\psi _j\rangle \otimes |\Psi ^{j}_{1,2,\ldots , nk-1}\rangle \) into \(\sum _{j=0}^{n-1}\sqrt{c_j}|j\rangle \otimes |\psi _j\rangle \otimes |\Psi ^{j}_{\tau _j(1,2,\ldots , nk-1)}\rangle \), where \(|\Psi ^{j}_{1,2,\ldots , nk-1}\rangle =\otimes _{t=1}^n|\psi _t\rangle ^{\otimes k_{jt}}\) with integers \(k_{jt}\) satisfying \(k_{jt}=k\) for \(j\not =t\) and \(k_{jt}=k-1\) for \(j=t\). From forward evaluations, we can prove the results using the followed measurements induced by the operators \(|X\rangle \langle X|\) and \(|v\rangle \langle v|\) [17].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, MX., Li, HR., Lai, H. et al. Unified quantum no-go theorems and transforming of quantum pure states in a restricted set. Quantum Inf Process 16, 297 (2017). https://doi.org/10.1007/s11128-017-1754-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-017-1754-0

Keywords

Navigation