Skip to main content
Log in

Probabilistic cloning of a single-atom state via cavity QED

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We propose a scheme for probabilistically cloning a two-level state of an atom to a polarization photon via cavity QED system combined with linear optics elements. By choosing appropriate parameters, a controlled phase flip (CPF) gate between the atom and the probe photon is realized. Then we can judge that the cloning process should be continued (with the optimal probability) or interrupted by detecting the probe photon. If the cloning can be continued, the original atom state is deterministically cloned to the cloning photon by performing two more CPF gates and three single-qubit unitary operations. Otherwise, if the detection shows that the cloning should be interrupted, the cloning photon and the relevant operations are omitted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Wootters, W.K., Zurek, W.H.: A single quantum cannot be cloned. Nature 299, 802 (1982)

    Article  ADS  Google Scholar 

  2. Gisin, N., et al.: Quantum cryptography. Rev. Mod. Phys. 74, 145 (2002)

    ADS  Google Scholar 

  3. Bǔzek, V., Hillery, M.: Quantum copying: beyond the no-cloning theorem. Phys. Rev. A 54, 1844 (1996)

    ADS  MathSciNet  Google Scholar 

  4. Galvão, E.F., Hardy, L.: Cloning and quantum computation. Phys. Rev. A 62, 022301 (2000)

    ADS  MathSciNet  Google Scholar 

  5. van Enk, S.J.: Relations between cloning and the universal NOT derived from conservation laws. Phys. Rev. Lett. 95, 010502 (2005)

    Google Scholar 

  6. Ricci, M., et al.: Separating the classical and quantum information via quantum cloning. Phys. Rev. Lett. 95, 090504 (2005)

    ADS  Google Scholar 

  7. Bruss, D., Cinchetti, M., DAriano, G.M., Macchiavello, C.: Phase-covariant quantum cloning. Phys. Rev. A 62, 012302 (2000)

    ADS  Google Scholar 

  8. Fan, H., Imai, H., Matsumoto, K., Wang, X.B.: Phase-covariant quantum cloning of qudits. Phys. Rev. A 67, 022317 (2003)

    ADS  Google Scholar 

  9. Navez, P., Cerf, N.J.: Cloning a real d-dimensional quantum state on the edge of the no-signaling condition. Phys. Rev. A 68, 032313 (2003)

    ADS  Google Scholar 

  10. Zhang, W.H., Wu, T., Ye, L., Dai, J.L.: Optimal real state cloning in d dimensions. Phys. Rev. A 75, 044303 (2007)

    ADS  Google Scholar 

  11. Niu, C.S., Griffiths, R.B.: Two-qubit copying machine for economical quantum eavesdropping. Phys. Rev. A 60, 2764 (1999)

    ADS  MathSciNet  Google Scholar 

  12. Fiurášek, J.: Optical implementations of the optimal phase-covariant quantum cloning machine. Phys. Rev. A 67, 052314 (2003)

    ADS  Google Scholar 

  13. Buscemi, F., DAriano, G.M., Macchiavello, C.: Economical phase-covariant cloning of qudits. Phys. Rev. A 71, 042327 (2005)

    ADS  Google Scholar 

  14. Durt, T., Fiurasek, J., Cerf, N.J.: Economical quantum cloning in any dimension. Phys. Rev. A 72, 052322 (2005)

    ADS  MathSciNet  Google Scholar 

  15. Fang, B.L., Yang, Z., Ye, L.: Realizing a partial general quantum cloning machine with superconducting quantum-interference devices in a cavity QED. Phys. Rev. A 79, 054308 (2009)

    ADS  Google Scholar 

  16. Fang, B.L., Song, Q.M., Ye, L.: Realization of a universal and phase-covariant quantum cloning machine in separate cavities. Phys. Rev. A 83, 042309 (2011)

    ADS  Google Scholar 

  17. Černoch, A., et al.: Experimental phase-covariant cloning of polarization states of single photons. Phys. Rev. A 74, 042327 (2006)

    ADS  Google Scholar 

  18. Soubusta, J., Bartuskova, L., Cernoch, A., Fiurasek, J., Dusek, M.: Several experimental realizations of symmetric phase-covariant quantum cloners of single-photon qubits. Phys. Rev. A 76, 042318 (2007)

    ADS  Google Scholar 

  19. Nagali, E., DeAngelis, T., Sciarrino, F., DeMartini, F.: Experimental realization of macroscopic coherence by phase-covariant cloning of a single photon. Phys. Rev. A 76, 042126 (2007)

    ADS  Google Scholar 

  20. Sabuncu, M., Andersen, U.L., Leuchs, G.: Experimental demonstration of continuous variable cloning with phase-conjugate inputs. Phys. Rev. Lett. 98, 170503 (2007)

    ADS  Google Scholar 

  21. Du, J.F., et al.: Experimental quantum cloning with prior partial information. Phys. Rev. Lett. 94, 040505 (2005)

    ADS  Google Scholar 

  22. Cummins, H.K., et al.: Approximate quantum cloning with nuclear magnetic resonance. Phys. Rev. Lett. 88, 187901 (2002)

    ADS  Google Scholar 

  23. Chen, H.W., Zhou, X., Suter, D., Du, J.F.: Experimental realization of 1\(\rightarrow \)2 asymmetric phase-covariant quantum cloning. Phys. Rev. A 75, 012317 (2007)

    ADS  Google Scholar 

  24. Duan, L.M., Guo, G.C.: Probabilistic cloning and identification of linearly independent quantum states. Phys. Rev. Lett. 80, 4999 (1998)

    ADS  Google Scholar 

  25. Duan, L.M., Guo, G.C.: A probabilistic cloning machine for replicating two non-orthogonal states. Phys. Lett. A 243, 261 (1998)

    ADS  MATH  MathSciNet  Google Scholar 

  26. Pati, A.K.: Quantum superposition of multiple clones and the novel cloning machine. Phys. Rev. Lett. 83, 2849 (1999)

    ADS  MATH  MathSciNet  Google Scholar 

  27. Qiu, D.W.: Novel cloning machine with supplementary information. J. Phys. A 39, 5135 (2006)

    ADS  MATH  MathSciNet  Google Scholar 

  28. Azuma, K., Shimamura, J., Koashi, M., Imoto, N.: Probabilistic cloning with supplementary information. Phys. Rev. A 72, 032335 (2005)

    ADS  Google Scholar 

  29. Zhang, W.H., Yu, L.B., Cao, Z.L., Ye, L.: Optimal cloning of two known nonorthogonal quantum states. Phys. Rev. A 86, 022322 (2012)

    ADS  Google Scholar 

  30. Jiménez, O., Bergou, J., Delgado, A.: Probabilistic cloning of three symmetric states. Phys. Rev. A 82, 062307 (2010)

    ADS  MathSciNet  Google Scholar 

  31. Jiménez, O., Roa, L., Delgado, A.: Probabilistic cloning of equidistant states. Phys. Rev. A 82, 022328 (2010)

    ADS  Google Scholar 

  32. Chen, H.W., et al.: Experimental demonstration of probabilistic quantum cloning. Phys. Rev. Lett. 106, 180404 (2011)

    ADS  Google Scholar 

  33. Araneda, G., Cisternas, N., Jiménez, O., Delgado, A.: Nonlocal optimal probabilistic cloning of qubit states via twin photons. Phys. Rev. A 86, 052332 (2012)

    ADS  Google Scholar 

  34. Raimond, J.M., et al.: Manipulating quantum entanglement with atoms and photons in a cavity. Rev. Mod. Phys. 73, 565 (2001)

    ADS  MATH  MathSciNet  Google Scholar 

  35. Duan, L.M., Kimble, H.J.: Scalable photonic quantum computation through cavity-assisted interactions. Phys. Rev. Lett. 92, 127902 (2004)

    ADS  Google Scholar 

  36. Xiao, Y.F., Lin, X.M., Gao, J., Yang, Y., Han, Z.F., Guo, G.C.: Realizing quantum controlled phase flip through cavity QED. Phys. Rev. A 70, 042314 (2004)

    ADS  Google Scholar 

  37. Lin, X.M., Zhou, Z.W., Ye, M.Y., Xiao, Y.F., Guo, G.C.: One-step implementation of a multiqubit controlled-phase-flip gate. Phys. Rev. A 73, 012323 (2006)

    ADS  Google Scholar 

  38. Yu, C.S., Yi, X.X., Song, H.S., Mei, D.: Robust preparation of Greenberger–Horne–Zeilinger and W states of three distant atoms. Phys. Rev. A 75, 044301 (2007)

    ADS  Google Scholar 

  39. Xiao, Y.F., Han, Z.F., Yang, Y., Guo, G.C.: Quantum CPF gates between rare earth ions through measurement. Phys. Lett. A 330, 137 (2004)

    ADS  Google Scholar 

  40. Lin, G.W., Zou, X.B., Lin, X.M., Guo, G.C.: Robust and fast geometric quantum computation with multiqubit gates in cavity QED. Phys. Rev. A 79, 064303 (2009)

    ADS  Google Scholar 

  41. Chen, Q., Feng, M.: Quantum gating on neutral atoms in low-Q cavities by a single-photon input-output process. Phys. Rev. A 79, 064304 (2009)

    ADS  Google Scholar 

  42. Goto, H., Ichimura, K.: Condition for fault-tolerant quantum computation with a cavity-QED scheme. Phys. Rev. A 82, 032311 (2010)

    ADS  Google Scholar 

  43. Xiong, W., Ye, L.: Optimal real state quantum cloning machine in cavity quantum electrodynamics. J. Opt. Soc. Am. B 28, 2260 (2011)

    ADS  Google Scholar 

  44. Xiong, W., Wu, T., Ye, L.: Realization of nonlocal quantum gate through assisted-cavities. Int. J. Quantum Inf. 10, 1250011 (2012)

    Google Scholar 

  45. Englert, B.G., Kurtsiefer, C., Weinfurter, H.: Universal unitary gate for single-photon two-qubit states. Phys. Rev. A 63, 032303 (2001)

    ADS  Google Scholar 

  46. Maunz, P., Puppe, T., Schuster, I., Syassen, N., Pinkse, P.W.H., Rempe, G.: Normal-mode spectroscopy of a single-bound-atom-cavity system. Phys. Rev. Lett. 94, 033002 (2005)

    ADS  Google Scholar 

Download references

Acknowledgments

We are grateful to the editor and the anonymous reviewers for their helpful suggestions. This work is supported by the 211 Project of Anhui University, the Natural Science Foundation of Anhui University (KJQN1104), the National Science Foundation of China (11374013) and the Anhui Provincial Natural Science Foundation (1408085QF127).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Rui, P., Lu, Y. et al. Probabilistic cloning of a single-atom state via cavity QED. Quantum Inf Process 14, 2271–2280 (2015). https://doi.org/10.1007/s11128-015-0968-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-015-0968-2

Keywords

Navigation