Skip to main content
Log in

Time-resolved infrared spectroscopy in the study of photosynthetic systems

  • Review
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Time-resolved (TR) infrared (IR) spectroscopy in the nanosecond to second timescale has been extensively used, in the last 30 years, in the study of photosynthetic systems. Interesting results have also been obtained at lower time resolution (minutes or even hours). In this review, we first describe the used techniques—dispersive IR, laser diode IR, rapid-scan Fourier transform (FT)IR, step-scan FTIR—underlying the advantages and disadvantages of each of them. Then, the main TR-IR results obtained so far in the investigation of photosynthetic reactions (in reaction centers, in light-harvesting systems, but also in entire membranes or even in living organisms) are presented. Finally, after the general conclusions, the perspectives in the field of TR-IR applied to photosynthesis are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. In the last 15 years, at least two independent research groups have tried (or are trying) to apply step-scan FTIR-DS to PSII. To our knowledge, no data have been published on the subject. A PhD thesis was totally devoted to the subject (Süss 2011).

  2. So far, to our knowledge, no biophysical applications of mid-IR-TR frequency-comb spectroscopy have been reported, so we are a bit reluctant to include this new, revolutionary and extremely powerful technique in the perspectives. However, its application to photo-induced reactions has already been reported (Fleischer et al. 2014).

References

  • Alexandre M, van Grondelle R (2012) Time-resolved FTIR difference spectroscopy reveals the structure and dynamics of carotenoids and chlorophyll triplets in photosynthetic light-harvesting complexes. In: Theophanides T (ed) Infrared spectroscopy—life and biomedical sciences; InTechopen: Rijeka, Croatia, pp 231–256

  • Alexandre MT, Lührs DC, van Stokkum IH, Hiller R, Groot ML, Kennis JT, van Grondelle R (2007) Triplet state dynamics in peridinin-chlorophyll-a-protein: a new pathway of photoprotection in LHCs? Biophys J 93:2118–2128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ataka K, Kottke T, Heberle J (2010) Thinner, smaller, faster: IR techniques to probe the functionality of biological and biomimetic systems. Angew Chem Int Ed 49:5416–5424

    Article  CAS  Google Scholar 

  • Ataka K, Stripp ST, Heberle J (2013) Surface-enhanced infrared absorption spectroscopy (SEIRAS) to probe monolayers of membrane proteins. Biochim Biophys Acta Biomembr 1828:2283–2293

    Article  CAS  Google Scholar 

  • Badura A, Esper B, Ataka K, Grunwald C, Wöll C, Kuhlmann J, Heberle J, Rögner M (2006) Light-driven water splitting for (bio-)hydrogen production: photosystem 2 as the central part of a bioelectrochemical device. Photochem Photobiol 82:1385–1390

    Article  CAS  PubMed  Google Scholar 

  • Barry BA, Cooper IB, De Riso A, Brewer SH, Vu DM, Dyer RB (2006) Time-resolved vibrational spectroscopy detects protein-based intermediates in the photosynthetic oxygen-evolving cycle. Proc Natl Acad Sci USA 103:7288–7291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartel K, Mäntele W, Siebert F, Kreutz W (1985) Time-resolved infrared studies of light-induced processes in plant thylakoids and bacterial chromatophore membranes. Evidence for the function of water molecules and the polypeptides in energy dissipation. Biochim Biophys Acta Bioenerg 808:300–315

    Article  CAS  Google Scholar 

  • Berthomieu C, Hienerwadel R (2009) Fourier transform infrared (FTIR) spectroscopy. Photosynth Res 101:157–170

    Article  CAS  PubMed  Google Scholar 

  • Blanchet L, Mezzetti A, Ruckebusch C, Huvenne JP, de Juan A (2007a) Multivariate curve resolution of rapid-scan FTIR difference spectra of quinone photoreduction in bacterial photosynthetic membranes. Anal Bioanal Chem 387:1863–1874

    Article  CAS  PubMed  Google Scholar 

  • Blanchet L, Ruckebusch C, Huvenne JP, de Juan A (2007b) Hybrid hard- and soft-modeling applied to difference spectra. Chemom Intell Lab Syst 89:26–35

    Article  CAS  Google Scholar 

  • Blanchet L, Ruckebusch C, Huvenne JP, de Juan A (2008) Focus on the potential of hybrid hard-and soft-MCR-ALS in time resolved spectroscopy. J Chemometr 22:666–673

    Article  CAS  Google Scholar 

  • Blanchet L, Ruckebusch C, Mezzetti A, Huvenne JP, de Juan A (2009) Monitoring and interpretation of photoinduced biochemical processes by rapid-scan FTIR difference spectroscopy and hybrid hard and soft modeling. J Phys Chem B 113:6031–6040

    Article  CAS  PubMed  Google Scholar 

  • Bonetti C, Alexandre MTA, Hiller RG, Kennis JTM, van Grondelle R (2009) Chl-a triplet quenching by peridinin in H-PCP and organic solvent revealed by step-scan FTIR time-resolved spectroscopy. Chem Phys 357:63–69

    Article  CAS  Google Scholar 

  • Bovi D, Mezzetti A, Vuilleumier R, Gaigeot MP, Chazallon B, Spezia R, Guidoni L (2011) Environmental effects on vibrational properties of carotenoids: experiments and calculations on peridinin. Phys Chem Chem Phys 13:20954–20964

    Article  CAS  PubMed  Google Scholar 

  • Bovi D, Mezzetti A, Guidoni L (2016) QM/MM dynamics of a Peridinin model in triplet state in three prototypical solvents. Vib Spectrosc. doi:10.1016/j.vibspec.2016.07.010

    Google Scholar 

  • Breton J (2006) FTIR studies of the primary donor P700. In: Goldbeck JH (ed) Photosystem I: the light-driven plastocyanin:ferrodoxin oxidoreductase. Springer, New York, pp 271–289

    Google Scholar 

  • Breton J (2007) Steady-state FTIR spectra of the photoreduction of QA and QB in Rhodobacter sphaeroides reaction centers provide evidence against the presence of a proposed transient electron acceptor X between the two quinones. Biochemistry 46:4459–4465

    Article  CAS  PubMed  Google Scholar 

  • Breton J, Nabedryk E (1993) So → T1 infrared difference spectrum of the triplet state of the primary electron donor in Rb. sphaeroides photosynthetic bacterial reaction centers. Chem Phys Lett 213:571–575

    Article  CAS  Google Scholar 

  • Breton J, Nabedryk E (1996) Protein-quinone interactions in the bacterial photosynthetic reaction center: light-induced FTIR difference spectroscopy of the quinone vibrations. Biochim Biophys Acta Bioenerg 1275:84–90

    Article  Google Scholar 

  • Breton J, Nabedryk E, Mioskowski C, Boullais C (1996) Protein-quinone interactions in photosynthetic bacterial reaction centers investigated by light-induced FTIR difference spectroscopy. In: Michel-Beyerle ME (ed) The reaction center of photosynthetic bacteria. Springer, Structure and Dynamics, pp 381–395

    Chapter  Google Scholar 

  • Breton J, Nabedryk E, Clerici A (1999) Light-induced FTIR difference spectroscopy of photosynthetic charge separation between 9000 and 250 cm−1. Vib Spectrosc 19:71–75

    Article  CAS  Google Scholar 

  • Brudler R, Gerwert K (1998) Step-scan FTIR spectroscopy resolved the Q A QB → QAQ B transition in Rb. sphaeroides R26 reaction centres. Photosynth Res 55:261–266

  • Burie JR, Leibl W, Nabedryk E, Breton J (1993) Step-scan FT-IR spectroscopy of electron transfer in the photosynthetic bacterial reaction center. Appl Spectrosc 47:1401–1404

    Article  CAS  Google Scholar 

  • Carbonera D, di Valentin M, Spezia R, Mezzetti A (2014) The unique photophysical properties of the peridinin-chlorophyll-a-protein. Curr Protein Pept Sci 15:332–350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen P, Palmer RA (1997) Ten nanosecond step-scan FT-IR absorption difference time-resolved spectroscopy: applications to excited states of transition metal complexes. Appl Spectrosc 51:580–583

    Article  CAS  Google Scholar 

  • Chu HA (2013) Fourier transform infrared difference spectroscopy for studying the molecular mechanism of photosynthetic water oxidation. Front Plant Sci 4:146

    Article  PubMed  PubMed Central  Google Scholar 

  • Di Donato M, Groot ML (2015) Ultrafast infrared spectroscopy in photosynthesis. Biochim Biophys Acta Bioenerg 1847:2–11

    Article  CAS  Google Scholar 

  • Fleischer AJ, Bjork BJ, Bui TQ, Cossel KC, Okumura M, Ye J (2014) Mid-infrared time-resolved frequency comb spectroscopy of transient free radicals. J Phys Chem Lett 5:2241–2246

    Article  CAS  Google Scholar 

  • Fogel C, Grzybek S, Hienerwadel R, Okamura MY, Paddock ML, Breton J, Nabedryk E, Mäntele W (1995) Time-resolved infrared and steady-state Fourier transform infrared spectroscopy of native and mutant reaction centers of Rhodobacter sphaeroides. In: Mathis P (ed) Photosynthesis: from light to biosphere (proceedings of the Xth international photosynthesis congress, in Montpellier, France, August 20–25, 1995) Springer, The Netherlands, pp 591–594

  • Gall A, Berera R, Alexandre MTA, Pascal AA, Bordes L, Mendes-Pinto MM, Andrianambinintsoa S, Stoitchkova KV, Marin A, Valkunas L, Horton P, Kennis JT, van Grondelle R, Ruban A, Robert B (2011) Molecular adaptation of photoprotection: triplet states in light-harvesting proteins. Biophys J 101:934–942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garczarek F, Wang J, El-Sayed M, Gerwert K (2004) The assignment of the different infrared continuum absorbance changes observed in the 3000–1800 cm−1 region during the bacteriorhodopsin photocycle. Biophys J 87:2676–2682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garczarek F, Brown LS, Lanyi JK, Gerwert K (2005) Proton binding within a membrane protein by a protonated water cluster. Proc Natl Acad Sci USA 102:3633–3638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gerwert K (2002) Molecular reaction mechanism of proteins monitored by time-resolved FT-IR difference spectroscopy. In: Chalmers JM, Griffiths PR (eds) Handbook of vibrational spectroscopy, vol 1. John Wiley, Chirchester, pp 3536–3555

    Google Scholar 

  • Giotta L, Mastrogiacomo D, Italiano F, Milano F, Agostiano A, Nagy K, Valli L, Trotta M (2011) Reversible binding of metal ions onto bacterial layers revealed by protonation-induced ATR-FTIR difference spectroscopy. Langmuir 27:3762–3773

    Article  CAS  PubMed  Google Scholar 

  • Goff KL, Quaroni L, Wilson KE (2009) Measurement of metabolite formation in single living cells of Chlamydomonas reinhardtii using synchrotron Fourier-transform infrared spectromicroscopy. Analyst 134:2216–2219

    Article  CAS  PubMed  Google Scholar 

  • Grills DC, George MW (2002) Fast and ultrafast time-resolved mid-infrared spectrometry using lasers. In: Chalmers JM, Griffiths PR (eds) Handbook of vibrational spectroscopy, vol 1. Wiley, Chirchester, pp 677–692

    Google Scholar 

  • Hashimoto M, Yuzawa T, Kato C, Iwata K, Hamaguchi H (2002) Fast time-resolved mid-infrared spectroscopy using grating spectrometers. In: Chalmers JM, Griffiths PR (eds) Handbook of vibrational spectroscopy, vol 1. Wiley, Chirchester, pp 666–676

    Google Scholar 

  • Hastings G (2006) Fourier transform infrared studies of the secondary electron acceptor A1. In: Goldbeck JH (ed) Photosystem I: the light-driven plastocyanin: ferrodoxin oxidoreductase. Springer, New York, pp 301–308

    Google Scholar 

  • Hastings G (2015) Vibrational spectroscopy of photosystem I. Biochim Biophys Acta Bioenerg 1847:55–68

    Article  CAS  Google Scholar 

  • Hermes S, Bremm O, Garczarek F, Derrien V, Liebisch P, Loja P, Sebban P, Gerwert K, Haumann M (2006a) A time-resolved iron-specific X-ray absorption experiment yields no evidence for an Fe2+ → Fe3+ transition during QA– → QB electron transfer in the photosynthetic reaction center. Biochemistry 45:353–359

    Article  CAS  PubMed  Google Scholar 

  • Hermes S, Stachnik JM, Onidas D, Remy A, Hofmann E, Gerwert K (2006b) Proton uptake in the reaction center mutant L210DN from Rhodobacter sphaeroides via protonated water molecules. Biochemistry 45:13741–13749

    Article  CAS  PubMed  Google Scholar 

  • Hienerwadel R (1993) Ladungstranportvorgänge in photosynthetischen Reaktionzentren, Ph.D. thesis, Faculty of Chemistry, University of Freiburg, Germany

  • Hienerwadel R, Kreutz W, Mäntele W (1987), Infrared spectroscopy of the photosystem II—water-splitting complex. In: Schmid ED, Schneider FW, Siebert F (eds) Spectroscopy of biological molecules: new advances, proceedings of 2nd European Conference on the spectroscopy of biological molecules, Freiburg, West Germany, Wiley, Chichester. pp 305–308

  • Hienerwadel R, Nabedryk E, Breton J, Mäntele W (1992a) Time-resolved infrared and static FTIR studies on QA → QB electron transfer in Rhodopseudomonas viridis reaction centers. In: Breton J, Verméglio A (eds) The Photosynthetic bacterial reaction center II. Plenum Press, New York, pp 163–172

    Chapter  Google Scholar 

  • Hienerwadel R, Thibodeau D, Lenz F, Nabedryk E, Breton J, Kreutz W, Mäntele W (1992b) Time-resolved infrared spectroscopy of electron transfer in bacterial photosynthetic reaction centers: dynamics of binding and interaction upon QA and QB reduction. Biochemistry 31:5799–5808

    Article  CAS  PubMed  Google Scholar 

  • Hienerwadel R, Grzybek S, Fogel C, Kreutz W, Okamura MY, Paddock ML, Breton J, Nabedryk E, Mäntele W (1995) Protonation of Glu L212 following QB formation in the photosynthetic reaction center of Rhodobacter sphaeroides: evidence from time-resolved infrared spectroscopy. Biochemistry 34:2832–2843

    Article  CAS  PubMed  Google Scholar 

  • Hillier W, Babcock GT (2001) S-state dependent Fourier transform infrared difference spectra for the Photosystem II oxygen evolving complex. Biochemistry 40:1503–1509

    Article  CAS  PubMed  Google Scholar 

  • Iwata T, Paddock ML, Okamura MY, Kandori H (2009) Identification of FTIR bands due to internal water molecules around the quinone binding sites in the reaction center from Rhodobacter sphaeroides. Biochemistry 48:1220–1229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jörger M, Simon A, Zachmann G (2015) The reinvention of interleaved time-resolved FT-IR spectroscopy. Book of abstract 8th International conference on advanced vibrational spectroscopy (ICAVS-8), Vienna, Austria, July 12–17, 2015. See also: Bruker GmbH, Application note # AN132 Interleaved time-resolved FT-IR spectroscopy

  • Kennis JT, Groot ML (2007) Ultrafast spectroscopy of biological photoreceptors. Curr Opin Struct Biol 17:623–630

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Barry BA (1998) Vibrational spectrum associated with the reduction of tyrosyl radical D· in Photosystem II: a comparative biochemical and kinetic study. Biochemistry 37:13882–13892

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Ayala I, Steenhuis JJ, Gonzalez ET, Barry BA (1998) Infrared spectroscopic identification of the C–O stretching vibration associated with the tyrosyl Z· and D· radicals in photosystem II. Biochim Biophys Acta Bioenerg 1364:337–360

    Article  CAS  Google Scholar 

  • Kimura Y, Ishii A, Yamanari T, Ono T (2005) Water-sensitive low-frequency vibrations of reaction intermediated during S-state cycling in photosynthetic water oxidation. Biochemistry 44:7613–7622

    Article  CAS  PubMed  Google Scholar 

  • Kish E, Mendes Pinto MM, Bovi D, Basire M, Guidoni L, Vuilleumier R, Robert B, Spezia R, Mezzetti A (2014) Fermi resonance as a tool for probing peridinin environment. J Phys Chem B 118:5873–5881

    Article  CAS  PubMed  Google Scholar 

  • Kötting C, Gerwert K (2005) Protein in action monitored by time-resolved FTIR spectroscopy. ChemPhysChem 6:881–888

    Article  PubMed  CAS  Google Scholar 

  • Krassen H, Schwarze A, Friedrich B, Ataka K, Lenz O, Heberle J (2009) Photosynthetic hydrogen production by a hybrid complex of photosystem I and [NiFe]-hydrogenase. ACS Nano 3:4055–4061

    Article  CAS  PubMed  Google Scholar 

  • Lórenz-Fonfría VA, Schultz BJ, Resler T, Schlesinger R, Bamann C, Bamberg E, Heberle J (2015) Pre-gating conformational changes in the ChETA variant of channelrhodopsin-2 monitored by nanosecond IR spectroscopy. J Am Chem Soc 137:1850–1861

    Article  PubMed  CAS  Google Scholar 

  • Makita H, Hastings G (2015) Directionality of electron transfer in cyanobacterial photosystem I at 298 and 77K. FEBS Lett 589:1412–1417

    Article  CAS  PubMed  Google Scholar 

  • Makita H, Hastings G (2016a) Time-resolved visible and infrared absorption spectroscopy data obtained using photosystem I particles with non-native quinones incorporated into the A1 site. Data Brief 7:1463–1468

    Article  PubMed  PubMed Central  Google Scholar 

  • Makita H, Hastings G (2016b) Modeling electron transfer in photosystem I. Biochim Biophys Acta Bioenerg 1857:723–733

    Article  CAS  Google Scholar 

  • Makita H, Zhao N, Hastings G (2015) Time-resolved visible and infrared difference spectroscopy for the study of photosystem I with different quinones incorporated into the A1 binding site. Biochim Biophys Acta Bioenerg 1847:343–354

    Article  CAS  Google Scholar 

  • Malferrari M, Venturoli G, Francia F, Mezzetti A (2012) A new method for D2O/H2O exchange in infrared spectroscopy of proteins. J Spectrosc 27:337–342

    Article  CAS  Google Scholar 

  • Malferrari M, Mezzetti A, Francia F, Venturoli G (2013) Effects of dehydration on light-induced conformational changes in bacterial photosynthetic reaction centers probed by optical and differential FTIR spectroscopy. Biochim Biophys Acta Bioenerg 1827:328–339

    Article  CAS  Google Scholar 

  • Malferrari M, Francia F, Venturoli G (2015a) Retardation of protein dynamics by trehalose in dehydrated systems of photosynthetic reaction centers. Insights from electron transfer and thermal denaturation kinetics. J Phys Chem B 119:13600–13618

    Article  CAS  PubMed  Google Scholar 

  • Malferrari M, Turina P, Francia F, Mezzetti A, Leibl W, Venturoli G (2015b) Dehydration affects the electronic structure of the primary electron donor in bacterial photosynthetic reaction centers: evidence from visible-NIR and light-induced difference FTIR spectroscopy. Photochem Photobiol Sci 14:238–251

    Article  CAS  PubMed  Google Scholar 

  • Malferrari M, Francia F, Mezzetti A, Venturoli G (2016) Kinetic effects in dehydration, rehydration, and isotopic exchange of bacterial photosynthetic reaction centers. Biomed Spectrosc Imaging 5:185–196

    Article  CAS  Google Scholar 

  • Mäntele W (1993) Reaction-induced infrared difference spectroscopy for the study of protein function and reaction mechanisms. Trends Biochem Sci 18:197–202

    Article  PubMed  Google Scholar 

  • Mäntele W (1995) Infrared vibrational spectroscopy of reaction centers. In: Madigan MT, Bauer CE, Blankenship RE (eds) Anoxygenic photosynthetic bacteria. Kluwer Academic Publishers, Berlin, pp 627–647

    Google Scholar 

  • Mäntele W (1996) Infrared and Fourier transform infrared spectroscopy. In: Amesz J, Hoff AJ (eds) Biophysical techniques in photosynthesis. Kluwer Academic Publishers, Dordrecht, pp 137–160

    Google Scholar 

  • Mäntele W, Hienerwadel R, Lenz F, Riedel WJ, Grisar R, Tacke M (1991) Application of tunable infrared diode lasers for the study of biochemical reactions: time-resolved vibrational spectroscopy of intermediates in the primary processes of photosynthesis. Spectroscopy 6:25–30

    Google Scholar 

  • Marcelli A, Innocenzi P, Malfatti L, Newton MA, Rau JV, Ritter E, Schade U, Xu W (2012) IR and X-ray time-resolved simultaneous experiments: an opportunity to investigate the dynamics of complex systems and non-equilibrium phenomena using third-generation synchrotron radiation sources. J Synchrotron Radiat 19:892–904

    Article  CAS  PubMed  Google Scholar 

  • Masutani K (2002) Time-resolved mid-infrared spectrometry using an asynchronous Fourier transform infrared spectrometer. In: Chalmers JM, Griffiths PR (eds) Handbook of vibrational spectroscopy, vol 1. Wiley, Chirchester, pp 655–665

    Google Scholar 

  • Mezzetti A (2010) Rapid-scan FTIR difference spectroscopy applied to ubiquinone reduction in photosynthetic reaction centers: ole of redox mediators. Spectrosc Int J 24:79–87

    Article  CAS  Google Scholar 

  • Mezzetti A (2015) Light-induced infrared difference spectroscopy in the investigation of light harvesting complexes. Molecules 20:12229–12249

    Article  CAS  PubMed  Google Scholar 

  • Mezzetti A, Leibl W (2005) Investigation of ubiquinol formation in isolated photosynthetic reaction centers by rapid-scan Fourier transform IR spectroscopy. Eur Biophys J 34:921–936

    Article  CAS  PubMed  Google Scholar 

  • Mezzetti A, Leibl W (2008) Proton and electron transfer in wild-type and mutant reaction centers from Rhodobacter sphaeroides followed by rapid-scan FTIR spectroscopy. Vibrat Spectrosc 48:126–134

    Article  CAS  Google Scholar 

  • Mezzetti A, Spezia R (2008) Time-resolved step scan FTIR spectroscopy and DFT investigation on triplet formation in peridinin-chlorophyll-a-protein from Amphidinium carterae at low temperature. Spectrosc Int J 22:235–250

    Article  CAS  Google Scholar 

  • Mezzetti A, Nabedryk E, Breton J, Okamura MY, Paddock ML, Giacometti G, Leibl W (2002) Rapid-scan Fourier transform infrared spectroscopy shows coupling of Glu-L212 protonation and electron transfer to QB in Rhodobacter sphaeroides reaction centers. Biochim Biophys Acta Bioenerg 1553:320–330

    Article  CAS  Google Scholar 

  • Mezzetti A, Leibl W, Breton J, Nabedryk E (2003a) Photoreduction of the quinone pool in the bacterialphotosynthetic membrane: identification of infrared marker bands for quinol formation. FEBS Lett 537:161–165

    Article  CAS  PubMed  Google Scholar 

  • Mezzetti A, Seo D, Leibl W, Sakurai H, Breton J (2003b) Time-resolved step-scan FTIR investigation on the primary donor of the reaction center from the green sulfur bacterium Chlorobium tepidum. Photosynth Res 75:161–169

    Article  CAS  PubMed  Google Scholar 

  • Mezzetti A, Blanchet L, de Juan A, Leibl W, Ruckebusch C (2011) Ubiquinol formation in isolated photosynthetic reaction centres monitored by time-resolved differential FTIR in combination with 2D correlation spectroscopy and multivariate curve resolution. Anal Bioanal Chem 399:1999–2014

    Article  CAS  PubMed  Google Scholar 

  • Mezzetti A, Kish E, Robert B, Spezia R (2015) Assignment of IR bands of isolated and protein-bound peridinin in its fundamental and triplet state by static FTIR, time-resolved step-scan FTIR and DFT calculations. J Mol Struct 1090:58–64

    Article  CAS  Google Scholar 

  • Morita EH, Hayashi H, Tasumi M (1993) Temperature dependence of the light-induced infrared difference spectra of chromatophores and reaction centers from photosynthetic bacteria. Biochim Biophys Acta Bioenerg 1142:146–154

    Article  CAS  Google Scholar 

  • Nabedryk E (1996) Light-induced Fourier transform infrared difference spectroscopy of the primary electron donor in photosynthetic reaction centers. In: Chapman D, Mantsch HH (eds) Infrared spectroscopy of biomolecules. Wiley, New York, pp 39–81

    Google Scholar 

  • Nabedryk E, Breton J (2008) Coupling of electron transfer to proton uptake at the QB site of the bacterial reaction center: a perspective from FTIR difference spectroscopy. Biochim Biophys Acta Bioenerg 1777:1229–1248

    Article  CAS  Google Scholar 

  • Nabedryk E, Breton J, Okamura MY, Paddock ML (2001) Simultaneous replacement of Asp-L210 and Asp-M17 with Asn increases proton uptake by Glu-L212 upon first electron transfer to QB in reaction centers from Rhodobacter sphaeroides. Biochemistry 40:13826–13832

    Article  CAS  PubMed  Google Scholar 

  • Naumann RL, Geiss AF, Steininger C, Knoll W (2016) Biomimetic membranes for multi-redox center proteins. Int J Mol Sci 17:E330

    Article  PubMed  Google Scholar 

  • Nedelkovski V, Schwaighofer A, Wraight CA, Nowak C, Naumann RLC (2013) Surface-enhanced infrared absorption spectroscopy (SEIRAS) of light-activated photosynthetic reaction centers from Rhodobacter sphaeroides reconstituted in a biomimetic membrane system. J Phys Chem C 117:16357–16363

    Article  CAS  Google Scholar 

  • Noguchi T (2010) Fourier transform infrared spectroscopy of special pair bacteriochlorophylls in homodimeric reaction centers of heliobacteria and green sulfur bacteria. Photosynth Res 104:321–331

    Article  CAS  PubMed  Google Scholar 

  • Noguchi T (2015) Fourier transform infrared difference and time-resolved infrared detection of the electron and proton transfer dynamics in photosynthetic water oxidation. Biochim Biophys Acta Bioenerg 1847:35–45

    Article  CAS  Google Scholar 

  • Noguchi T, Berthomieu C (2005) Molecular analysis by vibrational spectroscopy. In: Wydrzinski T, Satoh K (eds) Photosystem II: the light-driven water:plastoquinone oxidoreductase. Springer, NEw York, pp 367–387

    Google Scholar 

  • Noguchi T, Sugiura M (2001) Flash-induced Fourier transform infrared detection of the structural changes during the S-state cycle of the oxygen-evolving complex in photosystem II. Biochemistry 40:1497–1502

    Article  CAS  PubMed  Google Scholar 

  • Noguchi T, Tomo T, Kato C (2001) Triplet formation on a monomeric chlorophyll in the photosystem II reaction center as studied by time-resolved infrared spectroscopy. Biochemistry 40:2176–2185

    Article  CAS  PubMed  Google Scholar 

  • Noguchi T, Suzuki H, Tsuno M, Sugiura M, Kato C (2012) Time-resolved infrared detection of the proton and protein dynamics during photosynthetic oxygen evolution. Biochemistry 51:3205–3214

    Article  CAS  PubMed  Google Scholar 

  • Oda I, Iwaki M, Fujita D, Tsutsui Y, Ishizaka S, Dewa M, Nango M, Kajino T, Fukushima Y, Itoh S (2010) Photosynthetic electron transfer from reaction center pigment-protein complex in silica nanopores. Langmuir 26:13399–13406

    Article  CAS  PubMed  Google Scholar 

  • Okamura MY, Paddock ML, Graige MS, Feher G (2000) Proton and electron transfer in bacterial reaction centers. Biochim Biophys Acta Bioenerg 1458:148–163

    Article  CAS  Google Scholar 

  • Onidas D, Stachnik JM, Brucker S, Krätzig S, Gerwert K (2010) Histidine is involved in coupling proton uptake to electron transfer in photosynthetic proteins. Eur J Cell Biol 89:983–989

    Article  CAS  PubMed  Google Scholar 

  • Onoda K, Mino H, Inoue Y, Noguchi T (2000) An FTIR study on the structure of the oxygen-evolving Mn-cluster of Photosystem II in different spin forms of the S2 state. Photosynth Res 63:47–57

    Article  CAS  PubMed  Google Scholar 

  • Paddock ML, Adelroth P, Chang C, Abresch EC, Feher G, Okamura MY (2001) Identification of the proton pathway in bacterial reaction centers: cooperation between Asp-M17 and Asp-L210 facilitates proton transfer to the secondary quinone (QB). Biochemistry 40:6893–6902

    Article  CAS  PubMed  Google Scholar 

  • Parameswaran S, Wang R, Hastings G (2008) Calculation of the vibrational properties of chlorophyll a in solution. J Phys Chem B 112:14056–14062

    Article  CAS  PubMed  Google Scholar 

  • Quaroni L, Zlateva T (2011) Infrared spectromicroscopy of biochemistry in functional single cells. Analyst 136:3219–3232

    Article  CAS  PubMed  Google Scholar 

  • Radu I, Schleeger M, Bolwien C, Heberle J (2009) Time-resolved methods in biophysics. 10. Time-resolved FT-IR difference spectroscopy and the application to membrane proteins. Photochem Photobiol Sci 8:1517–1528

    Article  CAS  PubMed  Google Scholar 

  • Radu I, Schleeger M, Nack M, Heberle J (2011) Time-resolved FT-IR spectroscopy of membrane proteins. Aust J Chem 64:9–15

    Article  CAS  Google Scholar 

  • Remy A, Gerwert K (2003) Coupling of light-induced electron transfer to proton uptake in photosynthesis. Nat Struct Biol 10:637–644

    Article  CAS  PubMed  Google Scholar 

  • Ritter E, Puskar L, Bartl F, Aziz EF, Hegemann P, Schade U (2015) Time-resolved infrared spectroscopic techniques as applied to channelrhodopsin. Front Mol Biosci 2:38

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rödig C, Siebert F (1999) Errors and artifacts in time-resolved step-scan FT-IR spectroscopy. Appl Spectrosc 53:893–901

    Article  Google Scholar 

  • Rödig C, Siebert F (2002) Instrumental aspects of time-resolved spectra generated using step-scan interferometers. In: Chalmers JM, Griffiths PR (eds) Handbook of vibrational spectroscopy, vol 1. Wiley, Chirchester, pp 641–654

    Google Scholar 

  • Rödig C, Georg H, Siebert F, Rousso I, Sheves M (1999) Temperature effects of excitation laser pulses during step-scan FT-IR experiments. Laser Chem 19:169–172

    Article  Google Scholar 

  • Rogl H, Kühlbrandt W, Barth A (2003) Light-induced changes in the chemical bond structure of light-harvesting complex II probed by FTIR spectroscopy. Biochemistry 42:10223–10228

    Article  CAS  PubMed  Google Scholar 

  • Schade U, Ritter E, Hegemann P, Aziz EF, Hofmann KP (2014) Concept for a single-shot mid-infrared spectrometer using synchrotron radiation. Vib Spectrosc 75:190–195

    Article  CAS  Google Scholar 

  • Schleeger M, Wagner C, Vellekoop MJ, Lendl B, Heberle J (2009) Time-resolved flow-flash FT-IR difference spectroscopy: the kinetics of CO photodissociation from myoglobin revisited. Anal Bioanal Chem 394:1869–1877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shinkarev VP, Wraight CA (1997) The interaction of quinone and detergent with reaction centers of purple bacteria. I. Slow quinone exchange between reaction center micelles and pure detergent micelles. Biophys J 72:2304–2319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siebert F, Mäntele W, Kreutz W (1980) Flash-induced kinetic infrared spectroscopy applied to biochemical systems. Biophys Struct Mech 6:139–146

    Article  CAS  PubMed  Google Scholar 

  • Smith GD, Palmer RA (2002) Fast time-resolved mid-infrared spectroscopy using an interferometer. In: Chalmers JM, Griffiths PR (eds) Handbook of vibrational spectroscopy, vol 1. Wiley, Chirchester, pp 625–640

    Google Scholar 

  • Sturgis J, Robert B, Goormaghtigh E (1998) Transmembrane helix stability: the effect of helix-helix interactions studied by Fourier transform infrared spectroscopy. Biophys J 74:988–994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Süss B (2011) Entwicklung eines step-scan FTIR experiments zur Untersuchung der lichtinduzierten Wasserspaltung der oxygenen Photosynthese, Ph.D. thesis, Free Unversity of Berlin

  • Süss B, Ringleb F, Heberle J (2016) New ultrarapid-scanning interferometer for FT-IR spectroscopy with microsecond time-resolution Rev. Sci Instrum 87:063113

    Article  CAS  Google Scholar 

  • Thibodeau DL, Nabedryk E, Hienerwadel R, Lenz F, Mäntele W, Breton J (1990) Time-resolved FTIR spectroscopy of quinones in Rb. sphaeroides reaction centers. Biochim Biophys Acta Bioenerg 1020:253–259

    Article  CAS  Google Scholar 

  • Thibodeau DL, Nabedryk E, Hienerwadel R, Lenz F, Mäntele W, Breton J (1992) Time-resolved FTIR difference spectroscopy of photosynthetic bacterial reaction centers, In: Takahashi H (ed) Time-resolved vibrational spectroscopy V, Springer Proceedings in physics 68, Springer, pp 79–82

  • Tiede DM, Vashishta AC, Gunner MR (1993) Electron-transfer kinetics and electrostatic properties of the Rhodobacter sphaeroides reaction center and soluble c-cytochromes. Biochemistry 32:4515–4531

    Article  CAS  PubMed  Google Scholar 

  • Uhmann W, Becker A, Taran C, Siebert F (1991) Time-resolved FT-IR absorption spectroscopy using a step-scan interferometer. Appl Spectrosc 45:390–397

    Article  CAS  Google Scholar 

  • Venturoli G, Mallardi A, Mathis P (1993) Electron transfer from cytochrome c 2 to the primary donor of Rhodobacter sphaeroides reaction centers. A temperature dependence study. Biochemystry 32:13245–13253

    Article  CAS  Google Scholar 

  • Wilson A, Gwizdala M, Mezzetti A, Alexandre M, Kerfeld CA, Kirilovsky D (2012) The essential role of the N-terminal domain of the orange carotenoid protein in cyanobacterial photoprotection: importance of a positive charge for phycobilisome binding. Plant Cell 24:1972–1983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wraight CA, Gunner MR (2009) The acceptor quinones of purple photosynthetic bacteria—structure and spectroscopy. In: Thurnauer MC, Beatty JT, Hunter CN (eds) The purple phototropic bacteria. Springer, New York, pp 379–405

    Chapter  Google Scholar 

  • Yuzawa T, Kato C, George MW, Hamaguchi H (1994) Nanosecond time-resolved infrared spectroscopy with a dispersive scanning spectrometer. Appl Spectrosc 48:684–690

    Article  CAS  Google Scholar 

  • Zhang H, Razeghifard MR, Fischer G, Wydrzinski T (1997) A time-resolved FTIR difference study of the plastoquinone QA and redox-active tyrosine YZ interactions in Photosystem II. Biochemistry 36:11762–11768

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Fischer G, Wydrzinski T (1998) Room-temperature vibrational difference spectrum for S2Q B /S1QB of Photosystem II determined by time-resolved Fourier transform infrared spectroscopy. Biochemistry 37:5511–5517

    Article  CAS  PubMed  Google Scholar 

  • Zscherp C, Schlesinger R, Tittor J, Oesterhelt D, Heberle J (1999) In situ determination of transient pKa changes of internal amino acids of bacteriorhodopsin by using time-resolved attenuated total reflection Fourier-transform infrared spectroscopy. Proc Natl Acad Sci USA 96:5498–5503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank Prof. G. Venturoli and Dr. M. Malferrari for stimulating discussion. A.M. thanks COST Action TD1102- Phototech for giving him the possibility of fruitful discussions with several European scientists working in photosynthesis research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Mezzetti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mezzetti, A., Leibl, W. Time-resolved infrared spectroscopy in the study of photosynthetic systems. Photosynth Res 131, 121–144 (2017). https://doi.org/10.1007/s11120-016-0305-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-016-0305-3

Keywords

Navigation