Skip to main content
Log in

Kinetics of NADP+/NADPH reduction–oxidation catalyzed by the ferredoxin-NAD(P)+ reductase from the green sulfur bacterium Chlorobaculum tepidum

  • Original Article
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Ferredoxin-NAD(P)+ oxidoreductase (FNR, [EC 1.18.1.2], [EC 1.18.1.3]) from the green sulfur bacterium Chlorobaculum tepidum (CtFNR) is a homodimeric flavoprotein with significant structural homology to bacterial NADPH-thioredoxin reductases. CtFNR homologs have been found in many bacteria, but only in green sulfur bacteria among photoautotrophs. In this work, we examined the reactions of CtFNR with NADP+, NADPH, and (4S-2H)-NADPD by stopped-flow spectrophotometry. Mixing CtFNRox with NADPH yielded a rapid decrease of the absorbance in flavin band I centered at 460 nm within 1 ms, and then the absorbance further decreased gradually. The magnitude of the decrease increased with increasing NADPH concentration, but even with ~50-fold molar excess NADPH, the absorbance change was only ~45 % of that expected for fully reduced protein. The absorbance in the charge transfer (CT) band centered around 600 nm increased rapidly within 1 ms, then slowly decreased to about 70 % of the maximum. When CtFNRred was mixed with excess NADP+, the absorbance in the flavin band I increased to about 70 % of that of CtFNRox with an apparent rate of ~4 s−1, whereas almost no absorption changes were observed in the CT band. Obtained data suggest that the reaction between CtFNR and NADP+/NADPH is reversible, in accordance with its physiological function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Scheme 2
Scheme 3

Similar content being viewed by others

Abbreviations

A :

Absorbance

Ad:

Adrenodoxin

AdR:

Adrenodoxin reductase

Bs :

Bacillus subtilis

Ct :

Chlorobaculum tepidum

CT:

Charge transfer

CTC:

Charge transfer complex

Ec :

Escherichia coli

FAD:

Flavin adenine dinucleotide

Fd:

Ferredoxin

FNR:

Ferredoxin-NAD(P)+ oxidoreductase

GR:

Glutathione reductase

HEPES:

2-[4-(2-hydroxyethyl)-1-piperazinyl]ethanesulfonic acid

NADPD:

(4S-2H)-reduced nicotinamide adenine dinucleotide phosphate

Pd:

Putidaredoxin

PdR:

Putidaredoxin reductase

TrxR:

Bacterial NADPH-thioredoxin reductase

Ox:

Oxidized

Red:

Reduced

References

  • Aliverti A, Pandini V, Pennati A, de Rosa M, Zanetti G (2008) Structural and functional diversity of ferredoxin-NADP+ reductases. Arch Biochem Biophys 474:283–291

    Article  CAS  PubMed  Google Scholar 

  • Batie CJ, Kamin H (1984) Ferredoxin:NADP+ oxidoreductase. Equilibria in binary and ternary complexes with NADP+ and ferredoxin. J Biol Chem 259:8832–8839

    CAS  PubMed  Google Scholar 

  • Batie CJ, Kamin H (1986) Association of ferredoxin-NADP+ reductase with NADP(H) specificity and oxidation-reduction properties. J Biol Chem 261:11214–11223

    CAS  PubMed  Google Scholar 

  • Bianchi V, Reichard P, Eliasson R, Pontis E, Krook M, Jornvall H, Haggard-Ljungquist E (1993) Escherichia coli ferredoxin NADP+ reductase: activation of E. coli anaerobic ribonucleotide reduction, cloning of the gene (fpr), and overexpression of the protein. J Bacteriol 175:1590–1595

    CAS  PubMed  PubMed Central  Google Scholar 

  • Blankenhorn G (1975) Flavin nicotinamide biscoenzymes: models for the interaction between NADH (NADPH) and flavin in flavoenzymes. Reaction rates and physicochemical properties of intermediate species. Eur J Biochem 50:351–356

    Article  CAS  PubMed  Google Scholar 

  • Buchanan BB, Arnon DI (1990) A reverse KREBS cycle in photosynthesis: consensus at last. Photosyn Res 24:47–53

    Article  CAS  Google Scholar 

  • Ceccarelli EA, Arakaki AK, Cortez N, Carrillo N (2004) Functional plasticity and catalytic efficiency in plant and bacterial ferredoxin-NADP(H) reductases. Biochim Biophys Acta 1698:155–165

    Article  CAS  PubMed  Google Scholar 

  • Correll CC, Ludwig ML, Bruns CM, Karplus PA (1993) Structural prototypes for an extended family of flavoprotein reductases: comparison of phthalate dioxygenase reductase with ferredoxin reductase and ferredoxin. Prot Sci 2:2112–2133

    Article  CAS  Google Scholar 

  • Dym O, Eisenberg D (2001) Sequence-structure analysis of FAD-containing proteins. Prot Sci 10:1712–1728

    Article  CAS  Google Scholar 

  • Ghisla S, Massey V, Lhoste J-M, Mayhew SG (1974) Fluorescence and optical characteristics of reduced flavines and flavoproteins. Biochemistry 13:589–597

    Article  CAS  PubMed  Google Scholar 

  • Hügler M, Sievert SM (2011) Beyond the Calvin cycle: Autotrophic carbon fixation in the ocean. Ann Rev Mar Sci 3:261–289

    Article  PubMed  Google Scholar 

  • Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M (2016) KEGG as a reference resource for gene and protein annotation. Nuc Acids Res 44(D1):D457–D462. doi:10.1093/nar/gkv1070

    Article  Google Scholar 

  • Kjær B, Scheller HV (1996) An isolated reaction center complex from the green sulfur bacterium Chlorobium vibrioforme can photoreduce ferredoxin at high rates. Photosyn Res 47:33–39

    Article  PubMed  Google Scholar 

  • Knaff DB, Hirasawa M (1991) Ferredoxin-dependent chloroplast enzymes. Biochim Biophys Acta 1056:93–125

    Article  CAS  PubMed  Google Scholar 

  • Komori H, Seo D, Sakurai T, Higuchi Y (2010) Crystal structure analysis of Bacillus subtilis ferredoxin-NADP+ oxidoreductase and the structural basis for its substrate selectivity. Prot Sci 19:2279–2290

    Article  CAS  Google Scholar 

  • Lennon BW, Williams CH Jr (1997) Reductive half-reaction of thioredoxin reductase from Escherichia coli. Biochemistry 36:9464–9477

    Article  CAS  PubMed  Google Scholar 

  • Lennon BW, Williams CH Jr, Ludwig ML (1999) Crystal structure of reduced thioredoxin reductase from Escherichia coli: structural flexibility in the isoalloxazine ring of the flavin adenine dinucleotide cofactor. Prot Sci 8:2366–2379

    Article  CAS  Google Scholar 

  • Mandai T, Fujiwara S, Imaoka S (2009) A novel electron transport system for thermostable CYP175A1 from Thermus thermophilus HB27. FEBS J 276:2416–2429

    Article  CAS  PubMed  Google Scholar 

  • Massey V, Matthews RG, Foust GP, Howell LG, Williams CH Jr, Zanetti G, Ronchi S (1970) A new intermediate in TPNH-linked flavoproteins. In: Sund H (ed) Pyridine Nucleotide-dependent Dehydrogenases. Springer-Verlag, Berlin, pp 393–411

    Chapter  Google Scholar 

  • Medina M, Gómez-Moreno C (2004) Interaction of ferredoxin-NADP+ reductase with its substrates: optimal interaction for efficient electron transfer. Photosynth Res 79:113–131

    Article  CAS  PubMed  Google Scholar 

  • Munro AW, Girvan HM, McLean KJ (2007) Cytochrome P450-redox partner fusion enzymes. Biochim Biophys Acta 1770:345–359

    Article  CAS  PubMed  Google Scholar 

  • Muraki N, Seo D, Shiba T, Sakurai T, Kurisu G (2008) Crystallization and preliminary X-ray studies of ferredoxin-NAD(P)+ reductase from Chlorobium tepidum. Acta Crystallogr Sec F: Struc Biol Cryst Com 64:186–189

    Article  CAS  Google Scholar 

  • Muraki N, Seo D, Shiba T, Sakurai T, Kurisu G (2010) Asymmetric dimeric structure of ferredoxin-NAD(P)+ oxidoreductase from the green sulfur bacterium Chlorobaculum tepidum: implications for binding ferredoxin and NADP+. J Mol Biol 401:403–414

    Article  CAS  PubMed  Google Scholar 

  • Ogawa T, Furusawa T, Nomura R, Seo D, Hosoya-Matsuda N, Sakurai H, Inoue K (2008) SoxAX binding protein, a novel component of the thiosulfate-oxidizing multienzyme system in the green sulfur bacterium Chlorobium tepidum. J Bacteriol 190:6097–6110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ottolina G, Riva S, Carrea G, Danieli B, Buckmann AF (1989) Enzymatic synthesis of [4R-2H]NAD(P)H and [4S-2H]NAD(P)H and determination of the stereospecificity of 7α- and 12α-hydroxysteroid dehydrogenase. Biochim Biophys Acta 998:173–178

    Article  CAS  PubMed  Google Scholar 

  • Peregrina JR, Sánchez-Azqueta A, Herguedas B, Martínez-Júlvez M, Medina M (2010) Role of specific residues in coenzyme binding, charge-transfer complex formation, and catalysis in Anabaena ferredoxin NADP+-reductase. Biochim Biophys Acta 1797:1638–1646

    Article  CAS  PubMed  Google Scholar 

  • Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera--a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612

    Article  CAS  PubMed  Google Scholar 

  • Pollock VV, Barber MJ (2001) Kinetic and mechanistic properties of biotin sulfoxide reductase. Biochemistry 40:1430–1440

    Article  CAS  PubMed  Google Scholar 

  • Sakurai H, Ogawa T, Shiga M, Inoue K (2010) Inorganic sulfur oxidizing system in green sulfur bacteria. Photosyn Res 104:163–176

    Article  CAS  PubMed  Google Scholar 

  • Sánchez-Azqueta A, Musumeci MA, Martínez-Júlvez M, Ceccarelli EA, Medina M (2012) Structural backgrounds for the formation of a catalytically competent complex with NADP(H) during hydride transfer in ferredoxin-NADP+ reductases. Biochim Biophys Acta 1817:1063–1071

    Article  PubMed  Google Scholar 

  • Sánchez-Azqueta A, Catalano-Dupuy DL, López-Rivero A, Tondo ML, Orellano EG, Ceccarelli EA, Medina M (2014) Dynamics of the active site architecture in plant-type ferredoxin-NADP + reductases catalytic complexes. Biochim Biophys Acta 1837:1730–1738

    Article  PubMed  Google Scholar 

  • Seo D, Sakurai H (2002) Purification and characterization of ferredoxin-NAD(P)+ reductase from the green sulfur bacterium Chlorobium tepidum. Biochim Biophys Acta 1597:123–132

    Article  CAS  PubMed  Google Scholar 

  • Seo D, Tomioka A, Kusumoto N, Kamo M, Enami I, Sakurai H (2001) Purification of ferredoxins and their reaction with purified reaction center complex from the green sulfur bacterium Chlorobium tepidum. Biochim Biophy Acta 1503:377–384

    Article  CAS  Google Scholar 

  • Seo D, Kamino K, Inoue K, Sakurai H (2004) Purification and characterization of ferredoxin-NADP+ reductase encoded by Bacillus subtilis yumC. Arch Microbiol 182:80–89

    Article  CAS  PubMed  Google Scholar 

  • Seo D, Okabe S, Yanase M, Kataoka K, Sakurai T (2009) Studies of interaction of homo-dimeric ferredoxin-NAD(P)+ oxidoreductases of Bacillus subtilis and Rhodopseudomonas palustris, that are closely related to thioredoxin reductases in amino acid sequence, with ferredoxins and pyridine nucleotide coenzymes. Biochim Biophys Acta 1794:594–601

    Article  CAS  PubMed  Google Scholar 

  • Seo D, Asano T, Komori H, Sakurai T (2014) Role of the C-terminal extension stacked on the re-face of the isoalloxazine ring moiety of the flavin adenine dinucleotide prosthetic group in ferredoxin-NADP(+) oxidoreductase from Bacillus subtilis. Plant Physiol Biochem 81:143–148

    Article  CAS  PubMed  Google Scholar 

  • Seo D, Soeta T, Sakurai H, Sétif P, Sakurai T (2016) Pre-steady-state kinetic studies of redox reactions catalysed by Bacillus subtilis ferredoxin-NADP+ oxidoreductase with NADP+/NADPH and ferredoxin. Biochim Biophys Acta 1857:678–687

    Article  CAS  PubMed  Google Scholar 

  • Sétif P (2001) Ferredoxin and flavodoxin reduction by photosystem I. Biochim Biophys Acta 1507:161–179

    Article  PubMed  Google Scholar 

  • Sevrioukova IF, Li H, Poulos TL (2004) Crystal structure of putidaredoxin reductase from Pseudomonas putida, the final structural component of the cytochrome P450cam monooxygenase. J Mol Biol 336:889–902

    Article  CAS  PubMed  Google Scholar 

  • Tang KH, Blankenship RE (2010) Both forward and reverse TCA cycles operate in green sulfur bacteria. J Biol Chem 285:35848–35854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tejero J, Peregrina JR, Martínez-Júlvez M, Gutiérrez A, Gómez-Moreno C, Scrutton NS, Medina M (2007) Catalytic mechanism of hydride transfer between NADP+/H and ferredoxin-NADP+ reductase from Anabaena PCC 7119. Arch Biochem Biophys 459:79–90

    Article  CAS  PubMed  Google Scholar 

  • Tsukatani Y, Miyamoto R, Itoh S, Oh-oka H (2004) Function of a PscD subunit in a homodimeric reaction center complex of the photosynthetic green sulfur bacterium Chlorobium tepidum studied by insertional gene inactivation: regulation of energy transfer and ferredoxin-mediated NADP+ reduction on the cytoplasmic side. J Biol Chem 279:51122–51130

    Article  CAS  PubMed  Google Scholar 

  • Viola RE, Cook PF, Cleland WW (1979) Stereoselective preparation of deuterated reduced nicotinamide adenine nucleotides and substrates by enzymatic synthesis. Anal Biochem 96:334–340

    Article  CAS  PubMed  Google Scholar 

  • Waksman G, Krishna TS, Williams CH Jr, Kuriyan J (1994) Crystal structure of Escherichia coli thioredoxin reductase refined at 2 Å resolution. Implications for a large conformational change during catalysis. J Mol Biol 236:800–816

    Article  CAS  PubMed  Google Scholar 

  • Wan JT, Jarrett JT (2002) Electron acceptor specificity of ferredoxin (flavodoxin):NADP+ oxidoreductase from Escherichia coli. Arch Biochem Biophys 406:116–126

    Article  CAS  PubMed  Google Scholar 

  • Williams CH Jr (1995) Mechanism and structure of thioredoxin reductase from Escherichia coli. FASEB J 9:1267–1276

    CAS  PubMed  Google Scholar 

  • Yan Z, Nam YW, Fushinobu S, Wakagi T (2014) Sulfolobus tokodaii ST2133 is characterized as a thioredoxin reductase-like ferredoxin:NADP+ oxidoreductase. Extremophiles 18:99–110

    Article  CAS  PubMed  Google Scholar 

  • Ziegler GA, Vonrhein C, Hanukoglu I, Schulz GE (1999) The structure of adrenodoxin reductase of mitochondrial P450 systems: electron transfer for steroid biosynthesis. J Mol Biol 289:981–990

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Hidehiro Sakurai for stimulating discussions. This work was supported in part by a grant-in-aid for Scientific Research on Innovative Areas (No. 24107004) and the Strategic Research Base Development Program for Private Universities from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan (to KI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daisuke Seo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seo, D., Kitashima, M., Sakurai, T. et al. Kinetics of NADP+/NADPH reduction–oxidation catalyzed by the ferredoxin-NAD(P)+ reductase from the green sulfur bacterium Chlorobaculum tepidum . Photosynth Res 130, 479–489 (2016). https://doi.org/10.1007/s11120-016-0285-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-016-0285-3

Keywords

Navigation