Skip to main content
Log in

Unique chlorophylls in picoplankton Prochlorococcus sp. “Physicochemical properties of divinyl chlorophylls, and the discovery of monovinyl chlorophyll b as well as divinyl chlorophyll b in the species Prochlorococcus NIES-2086”

  • Review
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

In this review, we introduce our recent studies on divinyl chlorophylls functioning in unique marine picoplankton Prochlorococcus sp. (1) Essential physicochemical properties of divinyl chlorophylls are compared with those of monovinyl chlorophylls; separation by normal-phase and reversed-phase high-performance liquid chromatography with isocratic eluent mode, absorption spectra in four organic solvents, fluorescence information (emission spectra, quantum yields, and life time), circular dichroism spectra, mass spectra, nuclear magnetic resonance spectra, and redox potentials. The presence of a mass difference of 278 in the mass spectra between [M+H]+ and the ions indicates the presence of a phytyl tail in all the chlorophylls. (2) Precise high-performance liquid chromatography analyses show divinyl chlorophyll a’ and divinyl pheophytin a as the minor key components in four kinds of Prochlorococcus sp.; neither monovinyl chlorophyll a′ nor monovinyl pheophytin a is detected, suggesting that the special pair in photosystem I and the primary electron acceptor in photosystem II are not monovinyl but divinyl-type chlorophylls. (3) Only Prochlorococcus sp. NIES-2086 possesses both monovinyl chlorophyll b and divinyl chlorophyll b, while any other monovinyl-type chlorophylls are absent in this strain. Monovinyl chlorophyll b is not detected at all in the other three strains. Prochlorococcus sp. NIES-2086 is the first example that has both monovinyl chlorophyll b as well as divinyl chlorophylls a/b as major chlorophylls.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Figure adapted from Komatsu et al. (2015)

Fig. 3

Figure adapted from Komatsu et al. (2015)

Fig. 4

Figure adapted from Komatsu et al. (2014)

Fig. 5

Figure adapted from Komatsu et al. (2014)

Fig. 6

Figure adapted from Kobayashi et al. (2016)

Fig. 7

Figure adapted from Komatsu et al. (2014)

Fig. 8

Figure adapted from Komatsu et al. (2014)

Fig. 9

Figure adapted from Komatsu et al. (2014)

Fig. 10

Figure adapted from Komatsu et al. (2014)

Fig. 11

Figure adapted from Komatsu et al. (2014)

Fig. 12

Figure adapted from Komatsu et al. (2014)

Fig. 13

Similar content being viewed by others

Abbreviations

CAO:

Chlorophyllide a oxygenase

CD:

Circular dichroism

Chl:

Chlorophyll

DV-Chl:

Divinyl chlorophyll

DV-Phe:

Divinyl pheophytin

DVR:

Divinyl reductase

HMBC:

Heteronuclear multiple-bond correlation

HSQC:

Heteronuclear single quantum coherence

HPLC:

High-performance liquid chromatography

MV-Chl:

Monovinyl chlorophyll

MV-Phe:

Monovinyl pheophytin

NMR:

Nuclear magnetic resonance

NOESY:

Nuclear Overhauser and exchange spectroscopy

Phe:

Pheophytin

PS:

Photosystem

RC:

Reaction center

References

  • Bazzaz MB (1981) New chlorophyll chromophores isolated from a chlorophyll deficient mutant of maize. Photobiochem Photobiophys 2:199–207

    CAS  Google Scholar 

  • Bazzaz MB, Brereton RG (1982) 4-vinyl-4-desethyl chlorophyll a: a new naturally occurring chlorophyll. FEBS Lett 138:104–108

    Article  CAS  Google Scholar 

  • Bidigare RR, Ondrusek ME (1996) Spatial and temporal variability of phytoplankton pigment distributions in the central equatorial Pacific Ocean. Deep-Sea Res 43:809–833

    CAS  Google Scholar 

  • Boardman NK, Thorne SW (1971) Sensitive fluorescence method for the determination of chlorophyll a/chlorophyll b rations. Biochim Biophys Acta 253:222–231

    Article  CAS  PubMed  Google Scholar 

  • Bricaud A, Allali K, Morel A, Marie D, Veldhuis M, Partensky F, Vaulot D (1999) Divinyl chlorophyll a-specific absorption coefficients and absorption efficiency factors for Prochlorococcus marinus: kinetics of photoacclimation. Mar Ecol Prog Ser 188:21–32

    Article  CAS  Google Scholar 

  • Bullerjahn GS, Post AF (1993) The prochlorophytes: are they more than just chlorophyll a/b-containing cyanobacteria? Crit Rev Microbiol 19:43–59

    Article  CAS  PubMed  Google Scholar 

  • Burger-Wiersma T et al (1986) A new prokaryote containing chlorophylls a and b. Nature 320:262–264

    Article  CAS  Google Scholar 

  • Butler WL, Norris KH (1963) Lifetime of the long-wavelength chlorophyll fluorescence. Biochim Biophys Acta 66:72–77

    Article  CAS  PubMed  Google Scholar 

  • Campbell L, Nolla HA, Vaulot D (1994) The importance of Prochlorococcus to community structure in the central North Pacific Ocean. Limnol Oceanogr 39:954–961

    Article  CAS  Google Scholar 

  • Chen K, Preuβ A, Hackbarth S, Wacker M, Langer K, Roder B (2009) Novel photosensitizer-protein nanoparticles for photodynamic therapy: photophysical characterization and in vitro investigations. J Photochem Photobiol B 96:66–74

    Article  CAS  PubMed  Google Scholar 

  • Chisholm SW, Olson RJ, Zettler ER, Goericke R, Waterbury JB, Welschmeyer NA (1988) A novel free-living prochlorophyte abundant in the oceanic euphotic zone. Nature 334:340–343

    Article  Google Scholar 

  • Chisholm SW, Frankel SL, Goericke R, Olson RJ, Palenik B, Waterbury JB, Johnsrud LW, Zettler ER (1992) Prochlorococcus marinus nov. gen. nov. sp.: an oxyphototrophic marine prokaryote containing divinyl chlorophyll a and b. Arch Microbiol 157:297–300

    Article  CAS  Google Scholar 

  • Connolly JS, Janzen AF, Samuel EB (1982) Fluorescence lifetimes of chlorophyll a: solvent, concentration and oxygen dependence. Photochem Photobiol 36:559–563

    Article  CAS  Google Scholar 

  • Cotton TM, Van Duyne RP (1979) An electrochemical investigation of the redox properties of bacteriochlorophyll and bacteriopheophytin in aprotic solvents. J Am Chem Soc 101:7605–7612

    Article  CAS  Google Scholar 

  • French CS, Smith JHC, Virgin HI, Airth RL (1956) Fluorescence spectrum curves of chlorophylls, pheophytins, phycoerythrins, phycocyanins and hypericin. Plant Physiol 31:369–374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuhrhop JH (1975) Reversible reactions of porphyrins and metalloporphyrins and electrochemistry. In: Smith KM (ed) Porphyrins and metalloporphyrins (Chap. 14). Elsevier, Amsterdam

    Google Scholar 

  • Fujinuma D, Akutsu S, Komatsu H, Watanabe T, Miyashita H, Iwamoto K, Shiraiwa Y, Islam MR, Koike H, Kawachi M, Kobayashi M (2012) Detection of divinyl chlorophyll a’ and divinyl pheophytin a as minor key components in a marine picoplankton Prochlorococcus sp. RCC315. Photomed Photobiol 34:47–52

    CAS  Google Scholar 

  • Gieskes WW, Kraay GW (1983) Unknown chlorophyll a derivatives in the North Sea and the tropical Atlantic Ocean revealed by HPLC analysis. Limnol Oceanogr 28:757–766

    Article  CAS  Google Scholar 

  • Gieskes WW, Kraay GW (1986) Floristic and physiological differences between the shallow and the deep nanoplankton community in the euphotic zone of the open tropical Atlantic revealed by HPLC analysis of pigments. Mar Biol 91:567–576

    Article  CAS  Google Scholar 

  • Goericke R, Repeta DJ (1992) The pigments of Prochlorococcus marinus: the presence of divinyl chlorophyll a and b in a marine prokaryote. Limnol Oceanogr 37:425–433

    Article  CAS  Google Scholar 

  • Goericke R, Repeta DJ (1993) Chlorophylls a and b and divinyl chlorophylls a and b in the open subtropical North Atlantic Ocean. Mar Ecol Prog Ser 101:307

    Article  CAS  Google Scholar 

  • Goericke R, Olson RJ, Shalapyonok A (2000) A novel niche for Prochlorococcus sp. in low-light suboxic environments in the Arabian Sea and the Eastern Tropical North Pacific. Deep-Sea Res I 47:1183–1205

    Article  Google Scholar 

  • Gouterman M (1961) Spectra of porphyrins. J Mol Spectrosc 6:138–163

    Article  CAS  Google Scholar 

  • Gouterman M, Wagniere GH, Snyder LC (1963) Spectra of porphyrins: part II. Four orbital model. J Mol Spectrosc 11:108–127

    Article  CAS  Google Scholar 

  • Gradyushko AT, Sevchenko AN, Solovyov KN, Tsvirko MP (1970) Energetics of photophysical processes in chlorophyll like molecules. Photochem Photobiol 11:387–400

    Article  CAS  PubMed  Google Scholar 

  • Hall DO, Rao KK (1995) Photosynthesis, 5th edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Hanson LK (1991) Molecular orbital theory on monomer pigments. In: Scheer H (ed) Chlorophylls. CRC Press, Boca Raton, pp 993–1014

    Google Scholar 

  • Hess WR, Rocap G, Ting CS, Larimer F, Stilwagen S, Lamerdin J, Chisholm SW (2001) The photosynthetic apparatus of Prochlorococcus: insights through comparative genomics. Photosynth Res 70:53–71

    Article  CAS  PubMed  Google Scholar 

  • Iriyama K, Yoshiura M (1977) Absorption spectroscopy of chlorophylls a and b in methanol, dioxane and/or water. Colloid Polym Sci 255:133–139

    Article  CAS  Google Scholar 

  • Islam MR, Aikawa S, Midorikawa T, Kashino Y, Satoh K, Koike H (2008) slr1923 of Synechocystis sp. PCC6803 is essential for conversion of 3,8-divinyl(proto)chlorophyll(ide) to 3-monovinyl(proto)chlorophyll(ide). Plant Physiol 148:1068–1081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jabben M, Garcia NA, Braslavsky SE, Schaffner K (1986) Photophysical parameters of chlorophylls a and b Fluorescence and laser-induced optoacoustic measurements. Photochem Photobiol 43:127–131

    Article  CAS  Google Scholar 

  • Jayaraman S, Knuth ML, Cantwell M, Santos A (2011) High performance liquid chromatographic analysis of phytoplankton pigments using a C16-Amide column. J Chromatogr A 1218:3432–3438

    Article  CAS  PubMed  Google Scholar 

  • Jeffrey SW (1972) Preparation and some properties of crystalline chlorophyll c1 and c2 from marine algae. Biochim Biophys Acta 279:15–33

    Article  CAS  PubMed  Google Scholar 

  • Jeffrey SW, Humphrey GF (1975) New spectrophotometric equations for determining chlorophylls a, b, c, and c2 in higher plants, algae and natural phytoplankton. Biochem Physiol Pflanz 167:191–194

    CAS  Google Scholar 

  • Jordan P, Fromme P, Witt HT, Klukas O, Saenger W, Krauβ N (2001) Three-dimensional structure of cyanobacterial photosystem I at 2.5 Å resolution. Nature 411:909–917

    Article  CAS  PubMed  Google Scholar 

  • Juin C, Bonnet A, Nicolau E, Berard JB, Devillers R, Thiery V, Cadoret JP, Picot L (2015) UPLC-MSE Profiling of phytoplankton metabolites: application to the identification of pigments and structural analysis of metabolites in Porphyridium purpureum. Mar Drugs 13:2541–2558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaplanova M, Cermak K (1981) Effect of reabsorption on the concentration dependence of fluorescence lifetimes of chlorophyll a. J Photochem 15:313–319

    Article  CAS  Google Scholar 

  • Karukstis KK (1991) Chlorophyll fluorescence as a physiological probe of the photosynthetic apparatus. In: Scheer H (ed) Chlorophylls. CRC Press, Boca Raton, pp 769–795

    Google Scholar 

  • Klimov VV, Klevanik AV, Shuvalov VA, Krasnovsky AA (1977a) Reduction of pheophytin in the primary light reaction of photosystem II. FEBS Lett 82:183–186

    Article  CAS  PubMed  Google Scholar 

  • Klimov VV, Allkhverdiev SI, Demeter S, Krasnovsky AA (1977b) Photoreduction of pheophytin in photosystem 2 of chloroplasts with respect to the redox potential of the medium. Dokl Akad Nauk SSSR 249:227–230

    Google Scholar 

  • Kobayashi M (1989) Study on the molecular mechanism of photosynthetic reaction centers. Thesis, University of Tokyo, Tokyo

  • Kobayashi M, Watanabe T, Nakazato M, Ikegami I, Hiyama T, Matsunaga T, Murata N (1988) Chlorophyll a’/P700 and pheophytin a/P680 stoichiometries in higher plants and cyanobacteria determined by HPLC analysis. Biochim Biophys Acta 936:81–89

    Article  CAS  Google Scholar 

  • Kobayashi M, Oh-oka H, Akutsu S, Akiyama M, Tominaga K, Kise H, Nishida F, Watanabe T, Amesz J, Koizumi M, Ishida N, Kano H (2000) The primary electron acceptor of green sulfur bacteria, bacteriochlorophyll 663, is chlorophyll a esterified with Δ2,6-phytadienol. Photosynth Res 63:269–280

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi K, Akiyama M, Kano H, Kise H (2006) Spectroscopy and structure determination. In: Grimm B, Porra RJ, Rüdiger W, Scheer H (eds) Chlorophylls and bacteriochlorophylls: biochemistry, biophysics, functions and applications. Springer, Dordrecht, The Netherlands, pp 79–94

    Chapter  Google Scholar 

  • Kobayashi M, Ohashi S, Iwamoto K, Shiraiwa Y, Kato Y, Watanabe T (2007) Redox potential of chlorophyll d in vitro. Biochim Biophys Acta 1767:596–602

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi M, Akutsu S, Fujinuma D, Furukawa D, Komatsu H, Hotota Y, Kato Y, Kuroiwa Y, Watanabe T, Ohnishi-Kameyama M, Ono H, Ohkubo S, Miyashita H (2013) Physicochemical properties of chlorophylls in oxygenic photosynthesis—succession of co-factors from anoxygenic to oxygenic photosynthesis. In: Dubinsky Z (ed) Photosynthesis (Chap. 3). Intech, Rijeka, pp 47–90. doi:10.5772/55460

    Google Scholar 

  • Kobayashi M, Sorimachi Y, Fukayama D, Komatsu H, Kanjoh T, Wada K, Kawachi M, Miyashita H, Ohnishi-Kameyama M, Ono H (2016) Physicochemical properties of chlorophylls and bacteriochlorophylls. In: Mohammad P (ed) Handbook of photosynthesis (Chap. 6). CRC Press, Boca Raton, pp 95–148

    Chapter  Google Scholar 

  • Komatsu H, Fujinuma D, Akutsu S, Fukayama D, Sorimachi Y, Kato Y, Kuroiwa Y, Watanabe T, Miyashita H, Iwamoto K, Shiraiwa Y, Ohnishi-Kameyama M, Ono H, Koike H, Sato M, Kawachi M, Kobayashi M (2014) Physicochemical properties of divinyl chlorophylls a, a′ and divinyl pheophytin a compared with those of monovinyl derivatives. Photomed Photobiol 36:59–69

    Google Scholar 

  • Komatsu H, Kawachi M, Sato M, Watanabe T, Miyashita H, Koike H, Hanawa Y, Shiraiwa Y, Sorimachi Y, Wada K, Kobayashi M (2015) Presence of both monovinyl chlorophyll b and divinyl chlorophyll b in a picoplankton Prochlorococcus sp. NIES-2086. Photomed Photobiol 37:35–40

    Google Scholar 

  • Larkum AWD, Scaramuzzi C, Cox GC, Hiller RG, Turner AG (1994) Light-harvesting chlorophyll c-like pigment in Prochloron. Proc Natl Acad Sci USA 91:679–683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Latasa M, Bidigare RR, Ondrusek ME, Kennicutt MC II (1996) HPLC analysis of algal pigments: a comparison exercise among laboratories and recommendations for improved analytical performance. Mar Chem 51:315–324

    Article  CAS  Google Scholar 

  • Latimer P, Bannister TT, Rabinowitch E (1956) Quantum yields of fluorescence of plant pigments. Science 124:585–586

    Article  CAS  PubMed  Google Scholar 

  • Letelier RM, Bidigare RR, Hebel DV, Ondrusek M, Winn CD, Karl DM (1993) Temporal variability of phytoplankton community structure based on pigment analysis. Limnol Oceanogr 38:1420–1437

    Article  Google Scholar 

  • Leupold D, Struck A, Stiel H, Teuchner K, Oberlander S, Scheer H (1990) Excited-state properties of 20-chloro-chlorophyll a. Chem Phys Lett 170:478–484

    Article  CAS  Google Scholar 

  • Lewin R (1976) Prochlorophyte as a proposed new division of algae. Nature 261:697–698

    Article  CAS  PubMed  Google Scholar 

  • Matthijs HCP, van der StaayGWM Mur LR (1994) Prochlorophytes: the other cyanobacteria. In: Bryant DA (ed) The molecular biology of cyanobacteria. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 49–64

    Chapter  Google Scholar 

  • Maxwell DP, Falk S, Trick CG, Huner PA (1994) Growth at low temperature mimics high-light acclimation in Chlorella vulgaris. Plant Physiol 105:535–543

    CAS  PubMed  PubMed Central  Google Scholar 

  • Melis A (1999) Photosystem-II damage and repair cycle in chloroplasts: what modulates the rate of photodamage in vivo?. Trends Plant sci 4:130–135

    Article  PubMed  Google Scholar 

  • Moog RS, Kuki A, Fayer MD, Boxer SG (1984) Excitation transport and trapping in a synthetic chlorophyllide substituted hemoglobin: orientation of the chlorophyll S1 transition dipole. Biochemistry 23:1564–1571

    Article  CAS  PubMed  Google Scholar 

  • Moore LR, Post AF, Rocap G, Chisholm SW (2002) Utilization of different nitrogen sources by the marine cyanobacteria Prochlorococcus and Synechococcus. Limnol Oceanogr 47:989–996

    Article  CAS  Google Scholar 

  • Palenik BP, Haselkorn R (1992) Multiple evolutionary origins of prochlorophytes, the chlorophyll b-containing prokaryotes. Nature 355:267–269

    Article  Google Scholar 

  • Partensky F, Roche JL, Wyman K, Falkowski PG (1997) The divinyl-chlorophyll a/b-protein complexes of two strains of the oxyphototrophic marine prokaryote Prochlorococcus—characterization and response to changes in growth irradiance. Photosynth Res 51:209–222

    Article  CAS  Google Scholar 

  • Petke JD, Maggiora GM, Shipman L, Christoffersen RE (1979) Stereoelectronic properties of photosynthetic and related systems—v. ab initio configuration interaction calculations on the ground and lower excited singlet and triplet states of ethyl chlorophyllide a and ethyl pheophorbide a. Photochem Photobiol 30:203–223

    Article  CAS  Google Scholar 

  • Satoh S, Tanaka A (2006) Identification of chlorophyllide a oxygenase in the Prochlorococcus genome by a comparative genomic approach. Plant Cell Physiol 47:1622–1629

    Article  CAS  PubMed  Google Scholar 

  • Shedbalkar VP, Rebeiz CA (1992) Chloroplast biogenesis: determination of the Molar extinction coefficients of divinyl chlorophyll a and b and their pheophytins. Anal Biochem 207:261–266

    Article  CAS  PubMed  Google Scholar 

  • Smith JHC, Benitez A (1955) Chlorophylls: analysis in plant materials. In: Paech K, Tracey MV (eds) Moderne methoden der pflanzenanalyse, vol 4. Springer, Berlin, pp 142–196

    Chapter  Google Scholar 

  • Steglich C, Mullineaux CW, Teuchner K, Hess WR, Lokstein H (2003) Photophysical properties of Prochlorococcus marinus SS120 divinyl chlorophylls and phycoerythrin in vitro and in vivo. FEBS Lett 553:79–84

    Article  CAS  PubMed  Google Scholar 

  • Takeuchi Y, Amao Y (2005) Light-harvesting properties of zinc complex of chlorophyll-a from spirulina in surfactant micellar media. Biometals 18:15–21

    Article  CAS  PubMed  Google Scholar 

  • Tanaka A, Ito H, Tanaka R, Tanaka N, Yoshida K, Okada K (1998) Chlorophyll a oxygenase (CAO) is involved in chlorophyll b formation from chlorophyll a. Proc Natl Acad Sci 95:12719–12723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tomita G, Rabinowitch E (1962) Excitation energy transfer between pigments in photosynthetic cells. Biophys J 2:483–499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tomitani A, Okada K, Miyashita H, Matthijs HCP, Ohno T, Tanaka A (1999) Chlorophyll b and phycobilins in the common ancestor of cyanobacteria and chloroplasts. Nature 400:159–162

    Article  CAS  PubMed  Google Scholar 

  • Tomo T, Akimoto S, Ito H, Tsuchiya T, Fukuya M, Tanaka A, Mimuro M (2009) Replacement of chlorophyll with di-vinyl chlorophyll in the antenna and reaction center complexes of the cyanobacterium Synechocystis sp. PCC 6803: characterization of spectral and photochemical properties. Biochim Biophys Acta 1787:191–200

    Article  CAS  PubMed  Google Scholar 

  • Urbach E, Robertson D, Chisholm SW (1992) Multiple evolutionary origins of prochlorophytes within the cyanobacterial radiation. Nature 355:267–269

    Article  CAS  PubMed  Google Scholar 

  • Vladkova R (2000) Chlorophyll a self-assembly in polar solvent water mixtures. Photochem Photobiol 71:71–83

    Article  CAS  PubMed  Google Scholar 

  • Wasielewski MR, Norris JR, Shipman LL, Lin C-P, Svec WA (1981) Monomeric chlorophyll a enol: evidence for its possible role as the primary electron donor in photosystem I of plant photosynthesis. Proc Natl Acad Sci USA 78:2957–2961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watanabe T, Kobayashi M (1991) Electrochemistry of chlorophylls. In: Scheer H (ed) chlorophylls. CRC Press, Boca Raton

    Google Scholar 

  • Watanabe T, Hongu A, Honda K, Nakazato M, Konno M, Saitoh S (1984) Preparation of chlorophylls and pheophytins by isocratic liquid chromatography. Anal Sci 56:251–256

    CAS  Google Scholar 

  • Waterbury JB, Rippka R (1989) The order Chlorococales. In: Kreig NR, Holt JB (eds) Bergey’s manual of systematic bacteriologyvol, vol 3. Williams and Wilkens, New York, pp 1728–1746

    Google Scholar 

  • Weber G, Teale FWJ (1957) Determination of the absolute quantum yield of fluorescent solutions. Trans Faraday Soc 53:646–655

    Article  CAS  Google Scholar 

  • Weiss C (1978) Electronic absorption spectra of chlorophylls. In: Dolphin D (ed) The Porphyrins. Physical chemistry, Part A, vol III. Academic Press, New York, pp 211–223

    Google Scholar 

  • White RC, Jones ID, Gibbs E, Butler LS (1972) Fluorometric estimation of chlorophylls, chlorophyllides, pheophytins and pheophorbides in mixtures. J Agric Food Chem 20:773–778

    Article  CAS  Google Scholar 

  • Wolf H, Scheer H (1973) Stereochemistry and chiroptical properties of pheophorbides and related compounds. Ann N Y Acad Sci 206:549–567

    Article  CAS  PubMed  Google Scholar 

  • Zapata M, Rodríguez F, Garrido JL (2000) Separation of chlorophylls and carotenoids from marine phytoplankton: a new HPLC method using a reversed phase C8 column and pyridine-containing mobile phases. Mar Ecol Prog Ser 195:29–45

    Article  CAS  Google Scholar 

  • Zouni A, Witt HT, Kern J, Fromme P, Krauβ N, Saenger W, Orth P (2001) Crystal structure of Photosystem II from synechococcus elongates at 3.8Å resolution. Nature 409:739–743

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Mayumi Ohnishi-Kameyama, Dr. Hiroshi Ono (National Food Research Institute), Dr. Hiroyuki Koike (Chuo University), Messrs. Yuhta Isei, Taku Kaitani, Dr. Yutaka Hanawa, and Dr.Yoshihiro Shiraiwa (Univ. Tsukuba) for their kind and invaluable help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masami Kobayashi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Komatsu, H., Wada, K., Kanjoh, T. et al. Unique chlorophylls in picoplankton Prochlorococcus sp. “Physicochemical properties of divinyl chlorophylls, and the discovery of monovinyl chlorophyll b as well as divinyl chlorophyll b in the species Prochlorococcus NIES-2086”. Photosynth Res 130, 445–467 (2016). https://doi.org/10.1007/s11120-016-0283-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-016-0283-5

Keywords

Navigation