Skip to main content
Log in

Photosynthesis in developing leaf of juveniles and adults of three Mediterranean species with different growth forms

  • Original Article
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Leaf development is influenced by almost all the prevailing environmental conditions as well as from the conditions at the time of bud formation. Furthermore, the growth form of a plant determines the leaf longevity and subsequently the investment in biomass and the internal structure of the mesophyll. Therefore, photosynthetic traits of a growing leaf, though, partly predetermined, should also acclimate to temporal changes during developmental period. In addition, the age of the plant can affect photosynthesis of the growing leaf, yet, in the majority of studies, the age is associated to the size of the plant. To test if the reproductive status of the plant affects the time kinetics of the photosynthetic capacity of a growing leaf and the relative contribution of the plants’ growth form to the whole procedure, field measurements were conducted in juveniles (prereproductive individuals) and adults (fully reproductive individuals) of an evergreen sclerophyllous shrub (Nerium oleander), a semi-deciduous dimorphic shrub (Phlomis fruticosa), and a winter deciduous tree with pre-leafing flowering (Cercis siliquastrum). PSII structural and functional integrity was progressively developed in all species, but already completed, only some days after leaf expansion in P. fruticosa. Developing leaf as well as fully developed leaf in adults of C. siliquastrum showed enhanced relative size of the pool of final PSI electron acceptors. Photosynthetic traits between juveniles and adults of P. fruticosa were similar, though the matured leaf of adults exhibited lower transpiration rates and improved water-use efficiency than that of juveniles. Adults of the evergreen shrub attained higher CO2 assimilation rate than juveniles in matured leaf which can be attributed to higher electron flow devoted to carboxylation, and lower photorespiration rate. The reproductive phase of the plant seemed to be involved in modifications of the PSII and PSI functions of the deciduous tree, in carboxylation and photorespiration traits of the evergreen shrub, and in water conductance efficiency of the semi-deciduous shrub. However, it is interesting, that regardless of the growth form of the plant and the prospective leaf longevity of the developing leaf, adults need to support flowering outmatch juveniles, in terms of photosynthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

A :

Net photosynthetic rate

A max :

Maximum net photosynthetic rate

Car:

Carotenoid content

CE:

Carboxylation efficiency

Chl a/b :

Chlorophyll ratio

Chls:

Total chlorophyll content

C i :

Intercellular carbon dioxide concentration

g m :

Mesophyll conductance

g s :

Stomatal conductance

J C :

Photosynthetic electron flux density used for RuBR carboxylation

J C/J T :

Fraction of total electron flow devoted to carboxylation

JO :

Photosynthetic electron flux density used for RuBR oxygenation

J T :

Photosynthetic electron flux density

J Tmax :

Maximum photosynthetic electron flux density

l :

Stomatal limitation

LMA:

Leaf mass per area

NPQ:

Non-photochemical quenching

OJIP:

Fast Chl a fluorescence transient

PAR:

Photosynthetic active radiation

PSI:

Photosystem I

PSII:

Photosystem II

RC:

Reaction center

R d :

Day respiration or mitochondrial respiration rate

R l :

Rate of photorespiration

RWC:

Relative water content

Tr:

Transpiration rate

WUE:

Water-use efficiency

φ PSII :

Effective quantum yield of PSII

References

  • Bond BJ (2000) Age-related changes in photosynthesis of woody plants. Trends Plant Sci 5:349–353. doi:10.1016/S1360-1385(00)01691-5

    Article  CAS  PubMed  Google Scholar 

  • Brestic M, Zivcak M, Kunderlikova K, Sytar O, Shao HB, Kalaji HM, Allakhverdiev SI (2015) Low PSI content limits the photoprotection of PSI and PSII in early growth stages of chlorophyll b-deficient wheat mutant lines. Photosynth Res 125:151–166. doi:10.1007/s11120-015-0093-1

    Article  CAS  PubMed  Google Scholar 

  • Chapin FS III, Schulze E-D, Mooney HA (1990) The ecology and economics of storage in plants. Annu Rev Ecol Syst 21:324–447. doi:10.1146/annurev.es.21.110190.002231

    Article  Google Scholar 

  • Choinski JS Jr, Wise RR (1999) Leaf growth and development in relation to gas exchange in Quercus marilandica Muenchh. J Plant Physiol 154:302–309. doi:10.1016/S0176-1617(99)80172-2

    Article  CAS  Google Scholar 

  • Dawson TE (1996) Determining water use by trees and forests from isotopic, energy balance and transpiration analyses: the roles of tree size and hydraulic lift. Tree Physiol 16:263–272. doi:10.1093/treephys/16.1-2.263

    Article  PubMed  Google Scholar 

  • De Casas RR, Vargas P, Pérez-Corona E, Manrique E, García-Verdugo C, Balaguer L (2011) Sun and shade leaves of Olea europaea respond differently to plant size, light availability and genetic variation. Funct Ecol 25:802–812. doi:10.1111/j.1365-2435.2011.01851.x

    Article  Google Scholar 

  • De Soyza AG, Franco AC, Virginia RA, Reynolds JF, Whitford WG (1996) Effects of plant size on photosynthesis and water relations in the desert shrub Prosopis glandulosa (Fabaceae). Am J Bot 83:99–105. doi:10.2307/2445960

    Article  Google Scholar 

  • Dima E, Manetas Y, Psaras GK (2006) Chlorophyll distribution pattern in inner stem tissues: evidence from epifluorescence microscopy and reflectance measurements in 20 woody species. Trees 20:515–521. doi:10.1007/s00468-006-0067-1

    Article  CAS  Google Scholar 

  • Dinç E, Ceppi MG, Tóth SZ, Bottka S, Schansker G (2012) The chl a fluorescence intensity is remarkably insensitive to changes in the chlorophyll content of the leaf as long as the chl a/b ratio remains unaffected. Biochim Biophys Acta 1817:770–779. doi:10.1016/j.bbabio.2012.02.003

    Article  PubMed  Google Scholar 

  • Donovan LA, Ehleringer JR (1991) Ecophysiological differences among juvenile and reproductive plants of several woody species. Oecologia 86:594–597. doi:10.1007/BF00318327

    Article  Google Scholar 

  • Donovan LA, Ehleringer JR (1992) Contrasting water-use patterns among size and life-history classes of a semi-arid shrub. Funct Ecol 6:482–488. doi:10.2307/2389287

    Article  Google Scholar 

  • Eichelman H, Oja V, Rasulov B, Padu E, Bichele I, Pettai H, Niinemets Ü, Laisk A (2004) Development of leaf photosynthetic parameters in Betula pendula Roth leaves: correlations with photosystem I density. Plant Biol 6:307–318. doi:10.1055/s-2004-820874

    Article  Google Scholar 

  • Ethier GJ, Livingston NJ (2004) On the need to incorporate sensitivity to CO2 transfer conductance into the Farquhar-von Caemmerer-Berry leaf photosynthesis model. Plant Cell Environ 27:137–153. doi:10.1111/j.1365-3040.2004.01140.x

    Article  CAS  Google Scholar 

  • Foyer CH, Bloom AJ, Queval G, Noctor G (2009) Photorespiratory metabolism: genes, mutants, energetics, and redox signaling. Annu Rev Plant Biol 60:455–484. doi:10.1146/annurev.arplant.043008.091948

    Article  CAS  PubMed  Google Scholar 

  • Franck N, Vaast P, Génard M, Dauzat J (2006) Soluble sugars mediate sink feedback down-regulation of leaf photosynthesis in field-grown Coffea arabica. Tree Physiol 26:517–525. doi:10.1093/treephys/26.4.517

    Article  CAS  PubMed  Google Scholar 

  • Franco AC, De Soyza AG, Virginia RA, Reynolds JF, Whitford WG (1994) Effects of plant size and water relations on gas exchange and growth of the desert shrub Larrea tridentate. Oecologia 97:171–178. doi:10.1007/BF00323146

    Article  Google Scholar 

  • Genty B, Briantais J-M, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta 990:87–92. doi:10.1016/S0304-4165(89)80016-9

    Article  CAS  Google Scholar 

  • Grammatikopoulos G, Manetas Y (1994) Direct absorption of water by hairy leaves of Phlomis fruticosa and its contribution to drought avoidance. Can J Bot 72:1805–1811. doi:10.1139/b94-222

    Article  Google Scholar 

  • Grammatikopoulos G, Kyparissis A, Manetas Y (1995) Seasonal and diurnal gas exchange characteristics and water relations of the drought semi-deciduous shrub Phlomis fruticosa L. under Mediterranean field conditions. Flora 190:71–78

    Google Scholar 

  • Ishida A, Yazaki K, Ang LH (2005) Ontogenetic transition of leaf physiology and anatomy from seedlings to mature trees of a rain forest pioneer tree, Macaranga gigantean. Tree Physiol 25:513–522. doi:10.1093/treephys/25.5.513

    Article  PubMed  Google Scholar 

  • Jiang CZ, Rodermel SR, Shibles RM (1997) Regulation of photosynthesis in developing leaves of soybean chlorophyll-deficient mutants. Photosynth Res 51:185–192. doi:10.1023/A:1005824706653

    Article  CAS  Google Scholar 

  • Jiang C-D, Jiang G-M, Wang X, Li L-H, Biswas DK, Li Y-G (2006a) Increased photosynthetic activities and thermostability of photosystem II with leaf development of elm seedlings (Ulmus pumila) probed by the fast fluorescence rise OJIP. Environ Exp Bot 58:261–268. doi:10.1016/j.envexpbot.2005.09.007

    Article  CAS  Google Scholar 

  • Jiang C-D, Shi L, Gao H-Y, Schansker G, Toth SZ, Strasser RJ (2006b) Development of photosystems 2 and 1 during leaf growth in grapevine seedlings probed by chlorophyll a fluorescence transient and 820 nm transmission in vivo. Photosynthetica 44:454–463. doi:10.1007/s11099-006-0050-5

    Article  CAS  Google Scholar 

  • Jiang HX, Chen LS, Zheng JG, Han S, Tang N, Smith BR (2008) Aluminum-induced effects on photosystem II photochemistry in Citrus leaves assessed by the chlorophyll a fluorescence transient. Tree Physiol 28:1863–1871. doi:10.1093/treephys/28.12.1863

    Article  CAS  PubMed  Google Scholar 

  • Kalaji MH, Schansker G, Ladle RJ, Goltsev V, Bosa K, Allakhverdiev SI, Brestic M, Bussotti F et al (2014) Frequently asked questions about in vivo chlorophyll fluorescence: practical issues. Photosynth Res 122:121–158. doi:10.1007/s11120-014-0024-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kyparissis A, Petropoulou Y, Manetas Y (1995) Summer survival of leaves in a soft-leaved shrub (Phlomis fruticosa L., Labiatae) under Mediterranean field conditions: avoidance of photoinhibitory damage through decreased chlorophyll contents. J Exp Bot 46:1825–1831. doi:10.1093/jxb/46.12.1825

    Article  CAS  Google Scholar 

  • Kyparissis A, Grammatikopoulos G, Manetas Y (1997) Leaf demography and photosynthesis as affected by the environment in the drought semi-deciduous Mediterranean shrub Phlomis fruticosa L. Acta Oecol 18:543–555. doi:10.1016/S1146-609X(97)80040-9

    Article  Google Scholar 

  • Lebkuecher JG, Kaldeman KA, Harris CE, Holz SL, Joudah SA, Minton DA (1999) Development of photosystem-II activity during irradiance of etiolated Helianthus (Asteraceae) seedlings. Am J Bot 86:1087–1092. doi:10.2307/2656970

    Article  CAS  PubMed  Google Scholar 

  • Li WD, Duan W, Fan PG, Yan ST, Li SH (2007) Photosynthesis in response to sink-source activity and in relation to end products and activities of metabolic enzymes in peach trees. Tree Physiol 27:1307–1318. doi:10.1093/treephys/27.9.1307

    Article  CAS  PubMed  Google Scholar 

  • Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol 148:350–382. doi:10.1016/0076-6879(87)48036-1

    Article  CAS  Google Scholar 

  • Lim CC, Krebs SL, Arora R (2014) Cold hardiness increases with age in juvenile Rhododendron populations. Front Plant Sci 5:542

    Article  PubMed  PubMed Central  Google Scholar 

  • Long SP, Bernacchi CJ (2003) Gas exchange measurements, what can they tell us about the underlying limitations to photosynthesis? Procedures and sources of error. J Exp Bot 54:2393–2401. doi:10.1093/jxb/erg262

    Article  CAS  PubMed  Google Scholar 

  • Lu C, Zhang J, Zhang Q, Li L, Kuang T (2001) Modification of photosystem II photochemistry in nitrogen deficient maize and wheat plants. J Plant Physiol 158:1423–1430. doi:10.1078/0176-1617-00501

    Article  CAS  Google Scholar 

  • Marchi S, Tognetti R, Minnocci A, Borghi M, Sebastiani L (2008) Variation in mesophyll anatomy and photosynthetic capacity during leaf development in a deciduous mesophyte fruit tree (Prunus persica) and an evergreen sclerophyllous Mediterranean shrub (Olea europaea). Trees 22:559–571. doi:10.1007/s00468-008-0216-9

    Article  CAS  Google Scholar 

  • Marín-Navarro J, Manuell AL, Mayfield SP (2007) Chloroplast translation regulation. Photosynth Res 94:359–374. doi:10.1007/s11120-007-9183-z

    Article  PubMed  Google Scholar 

  • Maxwell K, Johnson GN (2000) Chlorophyll fluorescence—a practical guide. J Exp Bot 51:659–668. doi:10.1093/jexbot/51.345.659

    Article  CAS  PubMed  Google Scholar 

  • Mediavilla S, Escudero A (2004) Stomatal responses to drought of mature trees and seedlings of two co-occurring Mediterranean oaks. For Ecol Manag 187:281–294. doi:10.1016/j.foreco.2003.07.006

    Article  Google Scholar 

  • Miller A, Tsai C-H, Hemphill D, Endres M, Rodermel S, Spalding M (1997) Elevated CO2 effects during leaf ontogeny: a new perspective on acclimation. Plant Physiol 115:1195–1200. doi:10.1016/j.foreco.2003.07.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyazawa SI, Terashima I (2001) Slow development of leaf photosynthesis in an evergreen broad-leaved tree, Castanopsis sieboldii: relationships between leaf anatomical characteristics and photosynthetic rate. Plant Cell Environ 24:279–291. doi:10.1046/j.1365-3040.2001.00682.x

    Article  CAS  Google Scholar 

  • Miyazawa SI, Makino A, Terashima I (2003) Changes in mesophyll anatomy and sink-source relationships during leaf development in Quercus glauca, an evergreen tree showing delayed leaf greening. Plant Cell Environ 26:745–755. doi:10.1046/j.1365-3040.2003.01011.x

    Article  Google Scholar 

  • Niinemets Ü, Portsmuth A, Truus L (2002) Leaf structural and photosynthetic characteristics, and biomass allocation to foliage in relation to foliar nitrogen content and tree size in three Betula species. Ann Bot 89:191–204. doi:10.1007/s11099-012-0005-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niinemets Ü, Tenchunen JD, Beyschlag W (2004) Spatial and age-dependent modifications of photosynthetic capacity in four Mediterranean oak species. Funct Plant Biol 31:1179–1193. doi:10.1071/FP04128

    Article  Google Scholar 

  • Niinemets Ü, Díaz-Espejo A, Flexas J, Galmés J, Warren CR (2009) Importance of mesophyll diffusion conductance in estimation of plant photosynthesis in the field. J Exp Bot 60:2271–2282. doi:10.1093/jxb/erp063

    Article  CAS  PubMed  Google Scholar 

  • Niinemets Ü, García-Plazaola JI, Tosens T (2012) Photosynthesis during leaf development and ageing. In: Flexas J, Loreto F, Medrano H (eds) Terrestrial photosynthesis in a changing environment, 1st edn. Cambridge University Press, Cambridge, pp 353–372

    Chapter  Google Scholar 

  • Oukarroum A, Schansker G, Strasser RJ (2009) Drought stress effects on photosystem I content and photosystem II thermotolerance analyzed using Chl a fluorescence kinetics in barley varieties differing in their drought tolerance. Physiol Plant 137:188–199. doi:10.1111/j.1399-3054.2009.01273.x

    Article  CAS  PubMed  Google Scholar 

  • Papageorgiou G, Govindjee (2014) The non-photochemical quenching of the electronically excited state of chlorophyll a in plants: definitions, timelines, viewpoints, open questions. In: Demmig-Adams B, Garab G, Adams W III, Govindjee (eds) Non-photochemical quenching and energy dissipation in plants, algae and cyanobacteria, vol 40., Advances in photosynthesis and respiration seriesSpringer, Berlin, pp 1–44

    Google Scholar 

  • Peterson R, Oja V, Laisk A (2001) Chlorophyll fluorescence at 680 and 730 nm and leaf photosynthesis. Photosynth Res 70:185–196. doi:10.1023/A:1017952500015

    Article  CAS  PubMed  Google Scholar 

  • Reekie EG, Bazzaz FA (1987) Reproductive effort in plants. 3. Effect of reproduction on vegetative activity. Am Nat 129:907–919. doi:10.1086/284683

    Article  Google Scholar 

  • Ryan MG, Bond BJ, Law BE et al (2000) Transpiration and whole-tree conductance in ponderosa pine trees of different heights. Oecologia 124:553–560. doi:10.1007/s004420000403

    Article  Google Scholar 

  • Šestak Z (1985) Photosynthesis during leaf development. Academia, Praha. Dr W Junk Publications, Dodrecht, Boston, London

    Google Scholar 

  • Sims DA, Seemann JR, Luo Y (1998) The significance of differences in the mechanisms of photosynthetic acclimation to light, nitrogen and CO2 for return of investment in leaves. Funct Ecol 12:185–194. doi:10.1046/j.1365-2435.1998.00194.x

    Article  Google Scholar 

  • Srivastava A, Guissé B, Greppin H, Strasser RJ (1997) Regulation of antenna structure and electron transport in Photosystem II of Pisum sativum under elevated temperature probed by the fast polyphasic chlorophyll a fluorescence transient: OKJIP. Biochim Biophys Acta 1320:95–106. doi:10.1016/S0005-2728(97)00017-0

    Article  CAS  Google Scholar 

  • Srivastava A, Strasser RJ, Govindjee (1999) Greening of peas: Parallel measurements of 77 K emission spectra, OJIP chlorophyll a fluorescence transient, period four oscillation of the initial fluorescence level, delayed light emission, and P700. Photosynthetica 37:365–392. doi:10.1023/A:1007199408689

    Article  CAS  Google Scholar 

  • Stirbet A, Govindjee (2011) On the relation between the Kautsky effect (chlorophyll a fluorescence induction) and Photosystem II: basics and applications of the OJIP fluorescence transient. J Photochem Photobiol B 104:236–257. doi:10.1016/j.jphotobiol.2010.12.010

    Article  CAS  PubMed  Google Scholar 

  • Strasser RJ, Srivastava A, Govindjee (1995) Polyphasic chlorophyll a fluorescence transient in plants and cyanobacteria. Photochem Photobiol 61:32–42. doi:10.1111/j.1751-1097.1995.tb09240.x

    Article  CAS  Google Scholar 

  • Strasser RJ, Srivastava A, Tsimilli-Michael M (2000) The fluorescence transient as a tool to characterize and screen photosynthetic samples. In: Yunus M, Pathre U, Mohanty P (eds) Probing photosynthesis: mechanisms, regulation and adaptation. Taylor and Francis, London, pp 445–483

    Google Scholar 

  • Strasser RJ, Tsimilli-Michael M, Srivastava A (2004) Analysis of the chlorophyll a fluorescence transient. In: Papageorgiou GC, Govindjee (eds) Chlorophyll a fluorescence: a signature of photosynthesis. Springer Press, Netherlands, pp 321–362

    Chapter  Google Scholar 

  • Tardieu F, Granier C, Muller B (1999) Modelling leaf expansion in a fluctuating environment: are changes in specific leaf area a consequence of changes in expansion rate? New Phytol 143:33–43. doi:10.1046/j.1469-8137.1999.00433.x

    Article  Google Scholar 

  • Thomas SC (2010) Photosynthetic capacity peaks at intermediate size in temperate deciduous trees. Tree Physiol 30:555–573. doi:10.1093/treephys/tpq005

    Article  PubMed  Google Scholar 

  • Turner NC (1981) Techniques and experimental approaches for the measurement of plant water status. Plant Soil 58:339–366. doi:10.1007/BF02180062

    Article  Google Scholar 

  • Valentini R, Epron D, de Angelis P, Matteucci G, Dreyer E (1995) In situ estimation of net CO2 assimilation, photosynthetic electron flow and photorespiration in Turkey oak (Q. cerris L.) leaves: diurnal cycles under different levels of water supply. Plant Cell Environ 18:631–640. doi:10.1111/j.1365-3040.1995.tb00564.x

    Article  CAS  Google Scholar 

  • Voss I, Sunil B, Scheibe R, Raghavendra AS (2013) Emerging concept for the role of photorespiration as an important part of abiotic stress response. Plant Biol 15:713–722. doi:10.1111/j.1438-8677.2012.00710.x

    Article  CAS  PubMed  Google Scholar 

  • Wu BJ, Chow WS, Liu Y-J, Shi L, Jiang C-D (2014) Effects of stomatal development on stomatal conductance and on stomatal limitation of photosynthesis in Syringa oblata and Euonymus japonicus Thunb. Plant Sci 229:23–31. doi:10.1016/j.plantsci.2014.08.009

    Article  CAS  PubMed  Google Scholar 

  • Wullschleger SD, Oosterhuis DM (1989) Water use efficiency as a function of leaf age and position within the cotton canopy. Plant Soil 120:79–85. doi:10.1007/BF02370293

    Article  Google Scholar 

  • Yokota T, Hagihara A (1996) Dependence of the aboveground CO2 exchange rate on tree size in field-grown hinoki cypress (Chamaecyparis obtusa). J Plant Res 109:177–184. doi:10.1007/BF02344543

    Article  Google Scholar 

  • Yoo SD, Greer DH, Laing WA, McManus MT (2003) Changes in photosynthetic efficiency and carotenoid composition in leaves of white clover at different developmental stages. Plant Physiol Biochem 41:887–893. doi:10.1016/S0981-9428(03)00138-4

    Article  CAS  Google Scholar 

  • Zivcak M, Brestic M, Kalaji HM, Govindjee (2014) Photosynthetic responses of sun- and shade-grown barley leaves to high light: is the lower PSII connectivity in shade leaves associated with protection against excess of light? Photosynth Res 119:339–354. doi:10.1007/s11120-014-9969-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zivcak M, Brestic M, Kunderlikova K, Sytar O, Allakhverdiev SI (2015a) Repetitive light pulse-induced photoinhibition of photosystem I severely affects CO2 assimilation and photoprotection in wheat leaves. Photosynth Res 126:449–463. doi:10.1007/s11120-015-0121-1

    Article  CAS  PubMed  Google Scholar 

  • Zivcak M, Brestic M, Kunderlikova K, Olsovska K, Allakhverdiev SI (2015b) Effect of photosystem I inactivation on chlorophyll a fluorescence induction in wheat leaves: does activity of photosystem I play any role in OJIP rise? J Photochem Photobiol B 152:318–324. doi:10.1016/j.jphotobiol.2015.08.024

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The LiCor 6400 gas analyser used in this study was donated to the Laboratory of Plant Physiology by the Bodossaki Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Grammatikopoulos.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 800 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chondrogiannis, C., Grammatikopoulos, G. Photosynthesis in developing leaf of juveniles and adults of three Mediterranean species with different growth forms. Photosynth Res 130, 427–444 (2016). https://doi.org/10.1007/s11120-016-0276-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-016-0276-4

Keywords

Navigation