Skip to main content
Log in

Drought-induced changes in photosynthetic apparatus and antioxidant components of wheat (Triticum durum Desf.) varieties

  • Original Article
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Water deficit is a key factor influencing the yield and quality of crops. In the present study, the photosynthetic responses by means of chlorophyll fluorescence of chloroplasts, thylakoid membrane proteins, and antioxidant components were analyzed in wheat (Triticum durum Desf.) plants differing in their tolerance to drought. Two durum winter wheat varieties, Barakatli 95 (drought tolerant) and Garagylchyg 2 (drought sensitive) were grown under field well-watered and drought conditions. It was found that contents of the PS I core (CPI) with Mr of 123 kD and apoprotein P700 with Mr of 63 kD were relatively higher in Barakatli 95 variety under drought stress compared with the control plants. Synthesis of α- and β-subunits of CF1 ATP-synthase complex with Mr of 55 and 53.5 kD also slightly increased in the tolerant Barakatli 95 and decreased in the drought sensitive variety Garagylchyg 2. A decrease in the intensity of 30 kD band and a significant increase were found in the content of the 25–16 kD region in Garagylchyg 2 variety. The synthesis of 60 kD and content of low molecular mass polypeptides (21.5 and 12 kD) were increased in the tolerant genotype Barakatli 95. The intensity of peaks at 687, 695, and 742 nm considerably increases in the fluorescence spectra (77 K) of chloroplasts isolated from the sensitive variety Garagylchyg 2, and there is a stimulation of the ratio of fluorescence band intensity F687/F740. At the same time, higher level of glycine betaine was found in the drought tolerant variety compared with the control one throughout the different periods of growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ROS:

Reactive oxygen species

AsA:

Ascorbic acid

GB:

Glycine betaine

PS I:

Photosystem I

PS II:

Photosystem II

LHC:

Light-harvesting chlorophyll a/b-protein complex

Chl:

Chlorophyll

SDS:

Sodium dodecyl sulfate

F:

Fluorescence

References

  • Aliyev JA (2013) Peculiarities of photosynthesis of wheat genotypes contrast in grain yield and their use in breeding programs. In: Huang L, Zhao Q (eds) Crop yields: production, management practices and impact of climate change, vol 1. Nova Science Publishers, Inc, New York, pp 1–59

    Google Scholar 

  • Aranjuelo I, Molero G, Erice G, Avice JC, Nogués S (2011) Plant physiology and proteomics reveals the leaf response to drought in alfalfa (Medicago sativa L.). J Exp Bot 62:111–123

    Article  CAS  PubMed  Google Scholar 

  • Ashraf M (2009) Biotechnological approach of improving plant salt tolerance using antioxidants as markers. Biotechnol Adv 27:84–93

    Article  CAS  PubMed  Google Scholar 

  • Ashraf M, Harris PJC (2013) Photosynthesis under stressful environments: an overview. Photosynthetica 51:163–190

    Article  CAS  Google Scholar 

  • Balestrasse KB, Gardey L, Gallego SM, Tomaro ML (2001) Response of antioxidant defense system in soybean nodules and roots subjected to cadmium stress. Aust J Plant Physiol 28:497–504

    CAS  Google Scholar 

  • Bartoli CG, Yu J, Gomez F, Fernandez L, Mclnosh L, Foyer CH (2006) Inter-relationships between light and respiration in the control of ascorbic acid synthesis and accumulation in Arabidopsis thaliana leaves. J Exp Bot 57:1621–1631

    Article  CAS  PubMed  Google Scholar 

  • Batra NG, Sharma V, Kumari N (2014) Drought-induced changes in chlorophyll fluorescence, photosynthetic pigments, and thylakoid membrane proteins of Vigna radiata. J Plant Interact 9:712–721

    Article  CAS  Google Scholar 

  • Bhushan D, Pandey A, Choudhary MK, Datta A, Chakraborty S, Chakraborty N (2007) Comparative proteomics analysis of differentially expressed proteins in chickpea extracellular matrix during dehydration stress. Mol Cell Proteomics 6:1868–1884

    Article  CAS  PubMed  Google Scholar 

  • Chaves MM, Oliveira MM (2004) Mechanisms underlying plant resilience to water deficits: prospects for water-saving agriculture. J Exp Bot 55(407):2365–2384

    Article  CAS  PubMed  Google Scholar 

  • Chaves MM, Pereira JS, Maroco J, Rodrigues ML, Ricardo CPP, Osório ML, Carvalho I, Faria T, Pinheiro C (2002) How plants cope with water stress in the field: photosynthesis and growth. Ann Bot 89:907–916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaves MM, Pereira JS, Maroco J (2003) Understanding plant response to drought—from genes to the whole plant. Funct Plant Biol 30:239–264

    Article  CAS  Google Scholar 

  • Chaves MM, Flexas J, Pinheiro C (2009) Photosynthesis under drought and salt stress—regulation mechanisms from whole plant to cell. Ann Bot 103:551–560

    Article  CAS  PubMed  Google Scholar 

  • Demirevska-Kepova K, Simova-Stoilova L, Stoyanova Z, Feller U (2006) Cadmium stress in barley: growth, leaf pigment, and protein composition and detoxification of reactive oxygen species. J Plant Nutr 29:451–468

    Article  CAS  Google Scholar 

  • Dolatabadian A, Sanavy SAMM (2008) Effect of the ascorbic acid, pyridoxine and hydrogen peroxide treatments on germination, catalase activity, protein and malondialdehyde content of three oil seeds. Not Bot Hort Agrobot Cluj 36(2):61–66

    CAS  Google Scholar 

  • Friso G, Giacomelli L, Ytterberg AJ, Peltier JB, Rudella A, Sun Q, van Wijk KJ (2004) In-Depth analysis of the thylakoid membrane proteome of Arabidopsis thaliana chloroplasts: new proteins, new functions, and plastid proteome database. Plant Cell 16:478–499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garg B, Lata C, Prasad M (2012) A study of the role of gene tamyb2 and an associated snp in dehydration tolerance in common wheat. Mol Biol Rep 39:10865–10871

    Article  CAS  PubMed  Google Scholar 

  • Giardi MT (1993) Phosphorylation and disassembly of photosystem II as an early stage of photoinhibition. Planta 190:107–113

    Article  CAS  Google Scholar 

  • Giardi MT, Cona A, Kucera T (1996) Long-term drought stress induces structural and functional reorganization of photosystem II. Planta 199(2):118–125

    Article  CAS  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  CAS  PubMed  Google Scholar 

  • Gorantla M, Babu PR, Lachagari VBR, Reddy AMM, Wusirika R, Bennetzen JL, Reddy AR (2007) Identification of stress-responsive genes in an indica rice (Oryza sativa L.) using ESTs generated from drought stressed seedlings. J Exp Bot 58:253–265

    Article  CAS  PubMed  Google Scholar 

  • Gou W, Tian L, Ruan Zh, Zheng P, Chen F, Zhang L, Cui Zh, Zheng P, Li Zh, Gao M, Shi W, Zhang L, Liu J, Hu J (2015) Accumulation of choline and glycinebetaine and drought stress tolerance induced in maize (Zea mays) by tree plant growth promoting Rhizobacteria (PGPR) strains. Pak J Bot 47(2):581–586

    CAS  Google Scholar 

  • Greive CM, Grattan SR (1983) Rapid assay for determination of water-soluble quaternary amino compounds. Plant Soil 70:303–307

    Article  Google Scholar 

  • Guo PG, Baum M, Grando S, Ceccarelli S, Bai GH, Li RH, von Korff M, Varshney RK, Graner A, Valkoun J (2009) Differentially expressed genes between drought-tolerant and drought-sensitive barley genotypes in response to drought stress during the reproductive stage. J Exp Bot 60:3531–3544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guseinova IM, Suleimanov SYU, Zulfugarov IS, Aliev JA (2000) Assembly of the light-harvesting complexes during plastid development. J Fluoresc 10(3):255–259

    Article  CAS  Google Scholar 

  • Harb A, Krishnan A, Ambavaram MMR, Pereira A (2010) Molecular and physiological analysis of drought stress in Arabidopsis reveals early responses leading to acclimation in plant growth. Plant Physiol 154:1254–1271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He Q, Vermaas W (1998) Chlorophyll a availability affects psbA translation and D1 precursor processing in vivo in Synechocystis sp. PCC 6803. Proc Natl Acad Sci USA 95:5830–5835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huseynova IM, Suleymanov SY, Aliyev JA (2007) Structural functional state of thylakoid membranes of wheat genotypes under water stress. BBA 1767:869–875

    CAS  PubMed  Google Scholar 

  • Kawakami K, Umenab Y, Kamiyab N, Shen J (2009) Location of chloride and its possible functions in oxygen-evolving photosystem II revealed by X-ray crystallography. Proc Natl Acad Sci USA 106:8567–8572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan TA, Mazid M, Mohammad F (2011) A review of ascorbic acid potentialities against oxidative stress induced in plants. J Agrobiol 28(2):97–111

    Article  Google Scholar 

  • Kornyeyev D, Logan BA, Holaday AS (2002) A chlorophyll fluorescence analysis of the allocation of radiant energy absorbed in photosystem 2 antennae of cotton leaves during exposure to chilling. Photosynthetica 40(1):77–84

    Article  CAS  Google Scholar 

  • Krupa-Małkiewicz M, Smolik B, Ostojski D, Sędzik M, Pelc J (2015) Effect of ascorbic acid on morphological and biochemical parameters in tomato seedling exposure to salt stress. Environ Protect Nat Resour 26(64):21–25

    Google Scholar 

  • Kumari N, Sharma V (2010) Stress-mediated alteration in V-ATPase and V-PPase of Butea monosperma. Protoplasma 245:125–132

    Article  CAS  PubMed  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  • Law MY, Charles SA, Halliwell B (1983) Glutathione and ascorbic acid in spinach (Spinacia oleraceae) chloroplasts. Biohem J 210:899–903

    CAS  Google Scholar 

  • Lin GS, Wang GX (2002) Doubled CO2 could improve the drought tolerance better in sensitive cultivars than in tolrrant cultivars in spring wheat. Plant Sci 163:27–37

    Article  Google Scholar 

  • Liu N, Ko S, Yeh KC, Charng Y (2006) Isolation and characterization of tomato Hsa32 encoding a novel heatshock protein. Plant Sci 170:976–985

    Article  CAS  Google Scholar 

  • Ma QQ, Wei W, Yong-hua L, De-Quan L, Zoa LQ (2006) Alleviation of photoinhibition in drought stressed wheat (Triticum aestivum L.) by foliar applied glycinebetaine. J Plant Physiol 163:165–175

    Article  CAS  PubMed  Google Scholar 

  • Maksup S, Roytrakul S, Supaibulwatana K (2014) Physiological and comparative proteomic analyses of Thai jasmine rice and two chick cultivars in response to drought stress. J Plant Interact 9:43–55

    Article  CAS  Google Scholar 

  • Masojidek J, Trivedi S, Halshaw L, Alexiou A, Hall DO (1991) The synergistic effect of drought and light stresses in sorghum and pearl millet. Plant Physiol 96:198–207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mc-Kinney G (1941) Absorption of light by chlorophyll solutions. J Biol Chem 140:315–322

    Google Scholar 

  • Melis A (1991) Dynamics of photosynthetic membrane composition and function. BBA 1058:87–106

    CAS  Google Scholar 

  • Mi HL, Xu X, Li SH, He J, Zhang YP, Zhao TC, Ma YM (2004) Effects of soil water stress on contents of chlorophyll, soluble sugar, starch, C/N of two desert plants (Cynanchum komarovii and Glycyrrhiza uralensis). Acta Bot Boreal-Occident Sci 24(10):1816–1821

    CAS  Google Scholar 

  • Mittal S, Kumari N, Sharma V (2012) Differential response of salt stress on Brassica juncea: photosynthetic performance, pigment, proline, D1 and antioxidant enzymes. Plant Physiol Biochem 54:17–26

    Article  CAS  PubMed  Google Scholar 

  • Mohsen AA, Mohsen KHE, Wael FSG (2014) Role of ascorbic acid on germination indexes and enzyme activity of Vicia faba seeds grown under salinity stress. J Stress Physiol Boichem 10(3):62–77

    Google Scholar 

  • Monyo ES, Ejeta G, Rhodes D (1992) Genotypic variation for glycine betaine in sorghum and its relationship to agronomic and morphological traits. Media 37:283–286

    Google Scholar 

  • Murata N, Satoh K (1986) Absorption and fluorescence emission by intact cells, chloroplasts, and chlorophyll-protein complexes. In: Amesz J, Fork DC, Govindjee (eds) Light Emission by Plants and Bacteria. Academic Press, London, pp 137–159

    Chapter  Google Scholar 

  • Nair AS, Abraham TK, Jaya DS (2008) Studies on the changes in lipid peroxidation and antioxidant in drought stress induced cowpea (Vigna unguiculata L.) varieties. J Environ Biol 29(5):689–691

    CAS  PubMed  Google Scholar 

  • Navari-Izzo F, Quartacci MF, Pinzino C, Rascio N, Vazzana C, Sgherri CLM (2000) Protein dynamics in thylakoids of the dessication-tolerant plant Boea hygroscopica during dehydration and rehydration. Plant Physiol 124:1427–1436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pandey DM, Yeo UD (2008) Stress-induced degradation of D1 protein and its photoprotection by DCPIP in isolated thylakoid membranes of barley leaf. Biol Plant 52:291–298

    Article  CAS  Google Scholar 

  • Paradiso A, Berardino R, Pinto MC, Toppi LS, Storelli MM, Tommasi F, Gara L (2008) Increase in ascorbate–glutathione metabolism as local and precocious systemic responses induced by cadmium in durum wheat plants. Plant Cell Physiol 49:362–374

    Article  CAS  PubMed  Google Scholar 

  • Plomion C, Lalanne C, Claverol S, Meddour H, Kohler A, Bogeat-Triboulot MB, Barre A, Le Provost G, Dumazet H, Jacob D, Bastien C, Dreyer E, de Daruvar A, Guehl JM, Schmitter JM, Martin F, Bonneu M (2006) Mapping the proteome of poplar and application to the discovery of drought stress responsive proteins. Proteomics 6:6509–6527

    Article  CAS  PubMed  Google Scholar 

  • Reiahi N, Farahbakhsh H (2013) Ascorbate and drought stress effects on germination and seedling growth of sorghum. Int J Agro Plant Prod 4(5):901–910

    CAS  Google Scholar 

  • Rizhsky L, Liang H, Mittler R (2002) The combined effect of drought stress and heat shock on gene expression in tobacco. Plant Physiol 130:1143–1151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakomoto A, Murata N (2002) The role of glycine betaine in the protection of plants from stress: clues from transgenic plants. Plant Cell Environ 25:163–171

    Article  Google Scholar 

  • Satoh K, Hirai M, Nishio J, Yamaji Y, Kashino Y, Koike H (2002) Recovery of photosynthetic systems during rewetting is quite rapid in a terrestrial cyanobacterium, Nostoc commune. Plant Cell Physiol 43:170–176

    Article  CAS  PubMed  Google Scholar 

  • Shukla PS, Gupta K, Agarwal P, Jha B, Agarwal PK (2015) Overexpression of a novel SbMYB15 from Salicornia brachiata confers salinity and dehydration tolerance by reduced oxidative damage and improved photosynthesis in transgenic tobacco. Planta 242(6):1291–1308

    Article  CAS  PubMed  Google Scholar 

  • Sippola K, Kanervo E, Murata N, Aro E-M (1998) A genetically engineered increase in fatty acid unsaturation in Synechococcus sp. PCC 7942 allows exchange of D1 protein forms and sustenance of photosystem II activity at low temperature. Eur J Biochem 251:641–648

    Article  CAS  PubMed  Google Scholar 

  • Smirnoff N, Wheeler GL (2000) Ascorbic acid in plants: biosynthesis and function. Crit Rev Plant Sci 19:267–290

    Article  CAS  Google Scholar 

  • Tai FJ, Yuan ZL, Wu XL, Zhao PF, Hu XL, Wang W (2011) Identification of membrane proteins in maize leaves, altered in expression under drought stress through polyethylene glycol treatment. Plant Omics J 4:250–256

    CAS  Google Scholar 

  • Talla S, Riazunnisa K, Padmavathi L, Sunil B, Rajsheel P, Raghavendra AS (2011) Ascorbic acid is a key participant during the interaction between chloroplasts and mitochondria to optimize photosynthesis and protect against photoinhibition. J Biosci 36:163–173

    Article  CAS  PubMed  Google Scholar 

  • Tedone L, Hancock RD, Alberino S, Haupt S (2004) Long-distance transport of L-ascorbic acid in potato. BMC Plant Biol 17:4–16

    Google Scholar 

  • Trebst A, Depka B (1997) Role of carotene in the rapid turnover and assembly of photosystem II in Chlamydomonas reinhardtii. FEBS Lett 400:359–362

    Article  CAS  PubMed  Google Scholar 

  • Vasilikiotis C, Melis A (1994) Photosystem II reaction center damage and repair cycle: chloroplast acclimation strategy to irradiance stress. PNAS USA 91(15):7222–7226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yordanov I, Velikova V, Tsonev T (2000) Plant response to drought, acclimation, and stress tolerance. Photosynthetica 38:171–186

    Article  CAS  Google Scholar 

  • Zhang XW, Zhang YM, Chen F (1999) Application of mathematical models to the determination optimal glucose concentration and light intensity for mixotrophic culture of Spirulina platensis. Process Biochem 34:477–481

    Article  CAS  Google Scholar 

  • Zlatev Z (2009) Drought-induced changes in chlorophyll fluorescence of young wheat plant. Biotechnology 23:437–441

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Science Development Foundation under the President of the Republic of Azerbaijan (EIF-2010-1(1)-40/24-M-20).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Irada M. Huseynova or Jalal A. Aliyev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huseynova, I.M., Rustamova, S.M., Suleymanov, S.Y. et al. Drought-induced changes in photosynthetic apparatus and antioxidant components of wheat (Triticum durum Desf.) varieties. Photosynth Res 130, 215–223 (2016). https://doi.org/10.1007/s11120-016-0244-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-016-0244-z

Keywords

Navigation