Skip to main content
Log in

Localization of enzymes relating to C4 organic acid metabolisms in the marine diatom, Thalassiosira pseudonana

  • Regular Paper
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

In the genome of the marine diatom—Thalassiosira pseudonana, there are several putative genes encoding enzymes potentially constitute a classical C4 type biochemical CO2-concentrating mechanism. Two genes encode a carboxylation enzyme phosphoenolpyruvate carboxylase (PEPC)1 and PEPC2; and another two encode decarboxylation enzymes, NAD+-dependent malic enzyme (NAD-ME) and phosphoenolpyruvate carboxykinase (PEPCK). These genes were tagged by the enhanced-green fluorescence protein, egfp, ligated in the transformation vector, and transformed into the cells of T. pseudonana for localization of GFP fusion products. The PEPC1:GFP fusion was localized at the matrix of the periplastidal compartment, while the PEPC2:GFP fusion was localized at the mitochondria. The NAD-ME:GFP fusion was localized in the cytosol and the PEPCK:GFP fusion at the mitochondria. The transcripts level of NAD-ME was extremely low, and PEPCK transcript was significantly induced under the dark, suggesting that PEPCK is involved in the dark metabolism such as respiration and amino acid metabolism in the mitochondria. Treatments of low-CO2grown T. pseudonana cells with inhibitors for PEPCK and PEPC efficiently dissipated the maximum rate of photosynthesis while these treatments did not affect high-affinity photosynthesis. These data strongly suggest that classical C4 enzymes play little role in the CCM in T. pseudonana.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CCM:

CO2-concentrating mechanism

DIC:

Dissolved inorganic carbon

PEPC:

Phosphoenolpyruvate carboxylase

PEPCK:

Phosphoenolpyruvate carboxykinase

NAD-ME:

NAD+-dependent malic enzyme

PPDK:

Pyruvate phosphate dikinase

PYC:

Pyruvate carboxylase

CA:

Carbonic anhydrase

3-MPA:

3-Mercaptopicolinic acid

DCDP:

3,3-Dichloro-2-(dihydroxyphosphinoylmethyl)propenoate

References

  • Allen AE, Dupont CL, Obornik M, Horak A, Nunes-Nesi A, McCrow JP, Zheng H, Johnson DA, Hu H, Fernie AR, Bowler C (2011) Evolution and metabolic significance of the urea cycle in photosynthetic diatoms. Nature 473(7346):203–207

    Article  CAS  PubMed  Google Scholar 

  • Armbrust EV (2009) The life of diatoms in the world’s oceans. Nature 459(7244):185–192

    Article  CAS  PubMed  Google Scholar 

  • Armbrust EV et al (2004) The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism. Science 306(5693):79–86

    Article  CAS  PubMed  Google Scholar 

  • Aubry S, Brown NJ, Hibberd JM (2011) The role of proteins in C3 plants prior to their recruitment into the C4 pathway. J Exp Bot 62(9):3049–3059

    Article  CAS  PubMed  Google Scholar 

  • Badger MR, Hanson D, Price DG (2002) Evolution and diversity of CO2 concentrating mechanisms in cyanobacteria. Funct Plant Biol 29:161–173

    Article  CAS  Google Scholar 

  • Birmingham BC, Colman B (1979) Measurement of carbon dioxide compensation points of freshwater algae. Plant Physiol 64(5):892–895

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bowler C et al (2008) The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature 456(7219):239–244

    Article  CAS  PubMed  Google Scholar 

  • Burkhardt S, Amoroso G, Riebesell U, Sültemeyer D (2001) CO2 and HCO3 uptake in marine diatoms acclimated to different CO2 concentrations. Limnol Oceanogr 46(6):1378–1391

    Article  CAS  Google Scholar 

  • Emanuelsson O, Nielsen H, Brunak S, von Heijne G (2000) Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol 300(4):1005–1016

    Article  CAS  PubMed  Google Scholar 

  • Furbank RT (2011) Evolution of the C4 photosynthetic mechanism: are there really three C4 acid decarboxylation types? J Exp Bot 62(9):3103–3108

    Article  CAS  PubMed  Google Scholar 

  • Gerrard Wheeler MC, Tronconi MA, Drincovich MF, Andreo CS, Flugge UI, Maurino VG (2005) A comprehensive analysis of the NADP-malic enzyme gene family of Arabidopsis. Plant Physiol 139(1):39–51

    Article  PubMed Central  Google Scholar 

  • Gerrard Wheeler MCG, Arias CL, Tronconi MA, Maurino VG, Andreo CS, Drincovich MF (2008) Arabidopsis thaliana NADP-malic enzyme isoforms: high degree of identity but clearly distinct properties. Plant Mol Biol 67(3):231–242

    Article  CAS  Google Scholar 

  • Gould SB, Sommer MS, Hadfi K, Zauner S, Kroth PG, Maier UG (2006a) Protein targeting into the complex plastid of cryptophytes. J Mol Evol 62(6):674–681

    Article  CAS  PubMed  Google Scholar 

  • Gould SB, Sommer MS, Kroth PG, Gile GH, Keeling PJ, Maier UG (2006b) Nucleus-to-nucleus gene transfer and protein retargeting into a remnant cytoplasm of cryptophytes and diatoms. Mol Biol Evol 23(12):2413–2422

    Article  CAS  PubMed  Google Scholar 

  • Granum E, Roberts K, Raven JA, Leegood RC (2009) Primary carbon and nitrogen metabolic gene expression in the diatom Thalassiosira pseudonana (Bacillariophyceae): diel periodicity and effects of inorganic carbon and nitrogen. J Phycol 45(5):1083–1092

    Article  CAS  Google Scholar 

  • Gruber A, Vugrinec S, Hempel F, Gould SB, Maier UG, Kroth PG (2007) Protein targeting into complex diatom plastids: functional characterisation of a specific targeting motif. Plant Mol Biol 64(5):519–530

    Article  CAS  PubMed  Google Scholar 

  • Guillard RR, Ryther JH (1962) Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt, and Detonula confervacea (cleve) Gran. Can J Microbiol 8:229–239

    Article  CAS  PubMed  Google Scholar 

  • Harrison PJ, Waters RE, Taylor FJR (1980) A broad-spectrum artificial seawater medium for coastal and open ocean phytoplankton. J Phycol 16(1):28–35

    Google Scholar 

  • Hatch MD, Osmond CB (1976) Compartmentation and transport in C4 photosynthesis. In: Stocking SR, Hever U (eds) Encyclopedia of plant physiology, vol 3. Springer, Berlin, pp 144–184

    Google Scholar 

  • Hempel F, Bullmann L, Lau J, Zauner S, Maier UG (2009) ERAD-derived preprotein transport across the second outermost plastid membrane of diatoms. Mol Biol Evol 26(8):1781–1790

    Article  CAS  PubMed  Google Scholar 

  • Holdworth ES, Colbeck J (1976) The pattern of carbon fixation in the marine unicellular alga Phaeodactylum tricornutum. Mar Biol 38(2):189–199

    Article  Google Scholar 

  • Hopkinson BM, Dupont CL, Allen AE, Morel FMM (2011) Efficiency of the CO2-concentrating mechanism of diatoms. Proc Natl Acad Sci USA 108(10):3830–3837

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hopkinson BM, Meile C, Shen C (2013) Quantification of extracellular carbonic anhydrase in two marine diatoms and investigation of its role. Plant Physiol 162(2):1142–1152

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Inui M, Dumay V, Zahn K, Yamagata H, Yukawa H (1997) Structural and functional analysis of the phosphoenolpyruvate carboxylase gene from the purple non sulfur bacterium Rhodopseudomonas palustris No.7. J Bacteriol 179(15):4942–4945

    CAS  PubMed Central  PubMed  Google Scholar 

  • Izui K, Matsumura H, Furumoto T, Kai Y (2004) Phosphoenolpyruvate carboxylase: a new era of structural biology. Annu Rev Plant Biol 55:69–84

    Article  CAS  PubMed  Google Scholar 

  • Jenkins CLD, Harris RLN, McFadden HG (1987) 3,3-Dichloro-2-dihydroxyphosphonoylmethyl-2-propenoate, a new specific inhibitor of phosphoenolpyruvate carboxylase. Biochem Int 14:219–226

    CAS  Google Scholar 

  • Jitrapakdee S, Wallace JC (1999) Structure, function and regulation of pyruvate carboxylase. Biochem J 340(1):1–16

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kai Y, Matsumura H, Inoue T, Terada K, Nagara Y, Yoshinaga T, Kihara A, Tsumura K, Izui K (1999) Three-dimensional structure of phosphoenolpyruvate carboxylase: a proposed mechanism for allosteric inhibition. Proc Natl Acad Sci USA 96(3):823–828

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kilian O, Kroth PG (2005) Identification and characterization of a new conserved motif within the presequence of proteins targeted into complex diatom plastids. Plant J 41(2):175–183

    Article  CAS  PubMed  Google Scholar 

  • Kooistra WHCF, Gersonde R, Medlin L, Mann DG (2007) The origin and evolution of the diatoms: their adaptation to a planktonic existence. In: Falkowski PG, Knoll AH (eds) Evolution of primary producers in the sea. Elsevier Academic Press, Boston, pp 207–249

  • Krogh A, Larsson B, von Heijne G, Sonnhammer ELL (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305(3):567–580

    Article  CAS  PubMed  Google Scholar 

  • Kroth PG (2002) Protein transport into secondary plastids and the evolution of primary and secondary plastids. Int Rev Cytol 221:191–255

    Article  CAS  PubMed  Google Scholar 

  • Kroth PG, Chiovitti A, Gruber A, Martin-Jezequel V, Mock T, Parker MS, Stanley MS, Kaplan A, Caron L, Weber T, Maheswari U, Armbrust EV, Bowler C (2008) A model for carbohydrate metabolism in the diatom Phaeodactylum tricornutum deduced from comparative whole genome analysis. PLoS ONE 3(1):e1426

    Article  PubMed Central  PubMed  Google Scholar 

  • Matsuda Y, Nakajima K, Tachibana M (2011) Recent progresses on the genetic basis of the regulation of CO2 acquisition systems in response to CO2 concentration. Photosynth Res 109:191–203

    Article  CAS  PubMed  Google Scholar 

  • Matte A, Goldie H, Sweet RM, Delbaere LT (1996) Crystal structure of Escherichia coli phosphoenolpyruvate carboxykinase: a new structural family with the P-loop nucleoside triphosphate hydrolase fold. J Mol Biol 256(1):126–143

    Article  CAS  PubMed  Google Scholar 

  • Maurino VG, Gerrarad Wheeler MCG, Andreo CS, Drincovich MF (2009) Redundancy is sometimes seen only by the uncritical: does Arabidopsis need six malic enzyme isoforms? Plant Sci 176(6):715–721

    Article  CAS  Google Scholar 

  • McGinn PJ, Morel FM (2008) Expression and inhibition of the carboxylating and decarboxylating enzymes in the photosynthetic C4 pathway of marine diatoms. Plant Physiol 146(1):300–309

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Moroney JV, Ma Y, Frey WD, Fusilier KA, Pham TT, Simms TA, DiMario RJ, Yang J, Mukherjee B (2011) The carbonic anhydrase isoforms of Chlamydomonas reinhardtii: intracellular location, expression, and physiological roles. Photosynth Res 109:133–149

    Article  CAS  PubMed  Google Scholar 

  • Moustafa A, Beszteri B, Maier UG, Bowler C, Valentin K, Bhattacharya D (2009) Genomic footprints of a cryptic plastid endosymbiosis in diatoms. Science 324(5935):1724–1726

    Article  CAS  PubMed  Google Scholar 

  • Nakajima K, Tanaka A, Matsuda Y (2013) SLC4 family transporters in a marine diatom directly pump bicarbonate from seawater. Proc Natl Acad Sci USA 110(5):1767–1772

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • O’Leary B, Park J, Plaxton WC (2011) The remarkable diversity of plant PEPC (phosphoenolpyruvate carboxylase): recent insights into the physiological functions and post-translational controls of non-photosynthetic PEPCs. Biochem J 436(1):15–34

    Article  PubMed  Google Scholar 

  • Petersen TN, Brunak S, von Heijne G, Nielsen H (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8(10):785–786

    Article  CAS  PubMed  Google Scholar 

  • Poulsen N, Chesley PM, Kröger N (2006) Molecular genetic manipulation of the diatom Thalassiosira pseudonana (bacillariophyceae). J Phycol 42:1059–1065

    Article  Google Scholar 

  • Raven JA (1997) Putting the C in phycology. Eur J Phycol 32:319–333

    Article  Google Scholar 

  • Raven JA (2012) Algal biogeography: metagenomics show distribution of a picoplanktonic pelagophyte. Curr Biol 22:R682–R683

    Article  CAS  PubMed  Google Scholar 

  • Ray TB, Black CC (1976) Inhibition of oxaloacetate decarboxylation during C4 photosynthesis by 3-mercaptopicolinic acid. J Biol Chem 251(18):5824–5826

    CAS  PubMed  Google Scholar 

  • Reinfelder JR, Kraepiel AM, Morel FM (2000) Unicellular C4 photosynthesis in a marine diatom. Nature 407(6807):996–999

    Article  CAS  PubMed  Google Scholar 

  • Reinfelder JR, Milligan AJ, Morel FM (2004) The role of the C4 pathway in carbon accumulation and fixation in a marine diatom. Plant Physiol 135(4):2106–2111

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Roberts K, Granum E, Leegood RC, Raven JA (2007) C3 and C4 pathways of photosynthetic carbon assimilation in marine diatoms are under genetic, not environmental, control. Plant Physiol 145(1):230–235

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Samukawa M, Shen C, Hopkinson BM, Matsuda Y (2014) Localization of putative carbonic anhydrases in the marine diatom, Thalassiosira pseudonana. Photosynth Res (in press)

  • Sonnhammer ELL, von Heijne G, Krogh A (1998) A hidden Markov model for predicting transmembrane helices in protein sequences. In: Glasgow J, Littlejohn T, Major F, Lathrop R, Sankoff D, Sensen C (eds) Proceedings of the sixth international conference on intelligent systems for molecular biology. AAAI Press, Menlo Park, CA, pp 175–182

  • Sorhannus U (2007) A nuclear-encoded small-subunit ribosomal RNA timescale for diatom evolution. Mar Micropaleontol 65(1–2):1–12

    Article  Google Scholar 

  • Tachibana M, Allen AE, Kikutani S, Endo Y, Bowler C, Matsuda Y (2011) Localization of putative carbonic anhydrases in two marine diatoms, Phaeodactylum tricornutum and Thalassiosira pseudonana. Photosynth Res 109:205–221

    Article  CAS  PubMed  Google Scholar 

  • Tao X, Yang Z, Tong L (2003) Crystal structures of substrate complexes of malic enzyme and insights into the catalytic mechanism. Structure 11(9):1141–1150

    Article  CAS  PubMed  Google Scholar 

  • Tchernov D, Hassidim M, Luz B, Sukenik A, Reinhold L, Kaplan A (1997) Sustained net CO2 evolution during photosynthesis by marine microorganisms. Curr Biol 7(10):723–728

    Article  CAS  PubMed  Google Scholar 

  • Trimborn S, Wolf-Gladrow D, Richter KU, Rost B (2009) The effect of pCO2 on carbon acquisition and intracellular assimilation in four marine diatoms. J Exp Mar Biol Ecol 376(1):26–36

    Article  CAS  Google Scholar 

  • Tsuji Y, Suzuki I, Shiraiwa Y (2009) Photosynthetic carbon assimilation in the coccolithophorid Emiliania huxleyi (Haptophyta): evidence for the predominant operation of the C3 cycle and the contribution of β-carboxylases to the active anaplerotic reaction. Plant Cell Physiol 50(2):318–329

    Article  CAS  PubMed  Google Scholar 

  • Wedding RT, O’Brien CE, Kline K (1994) Oligomerization and the affinity of maize phosphoenolpyruvate carboxylase for its substrate. Plant Physiol 104(2):613–616

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wittpoth C, Kroth PG, Weyrauch K, Kowallik KV, Strotmann H (1998) Functional characterization of isolated plastids from two marine diatoms. Planta 206(1):79–85

    Article  CAS  Google Scholar 

  • Yang JQ, Kalhan SC, Hanson RW (2009) What is the metabolic role of phosphoenolpyruvate carboxykinase? J Biol Chem 284(40):27025–27029

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Young JN, Rickaby REM, Kapralov MV, Filatov DA (2012) Adaptive signals in algal Rubisco reveal a history of ancient atmospheric carbon dioxide. Philos Trans R Soc B 367:483–492

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Katsura Izui for providing DCDP. We thank Ms. Nobuko Higashiuchi for her technical assistance and Ms. Miyabi Inoue for her skillful secretarial assistance. This work was supported by Grant-in-Aid for Scientific Research B (Grant no. 24310015 to Y. M.), by Grant-in-Aid for Challenging Exploratory Research (Grant no. 24651119 to Y. M.) from Japan Society for the Promotion of Science (JSPS), by MEXT-Supported Program for the Strategic Research Foundation for the Advancement of Environmental Protection Technology and for Development of Intelligent Self-Organized Biomaterials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yusuke Matsuda.

Additional information

Rie Tanaka and Sae Kikutani have contributed equally to this paper.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 4132 kb)

Supplementary material 2 (DOCX 1772 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tanaka, R., Kikutani, S., Mahardika, A. et al. Localization of enzymes relating to C4 organic acid metabolisms in the marine diatom, Thalassiosira pseudonana . Photosynth Res 121, 251–263 (2014). https://doi.org/10.1007/s11120-014-9968-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-014-9968-9

Keywords

Navigation