Skip to main content
Log in

Protein film voltammetry and co-factor electron transfer dynamics in spinach photosystem II core complex

  • Regular Paper
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Direct protein film voltammetry (PFV) was used to investigate the redox properties of the photosystem II (PSII) core complex from spinach. The complex was isolated using an improved protocol not used previously for PFV. The PSII core complex had high oxygen-evolving capacity and was incorporated into thin lipid and polyion films. Three well-defined reversible pairs of reduction and oxidation voltammetry peaks were observed at 4 °C in the dark. Results were similar in both types of films, indicating that the environment of the PSII-bound cofactors was not influenced by film type. Based on comparison with various control samples including Mn-depleted PSII, peaks were assigned to chlorophyll a (Chl a) (E m = −0.47 V, all vs. NHE, at pH 6), quinones (−0.12 V), and the manganese (Mn) cluster (E m = 0.18 V). PFV of purified iron heme protein cytochrome b-559 (Cyt b-559), a component of PSII, gave a partly reversible peak pair at 0.004 V that did not have a potential similar to any peaks observed from the intact PSII core complex. The closest peak in PSII to 0.004 V is the 0.18 V peak that was found to be associated with a two-electron process, and thus is inconsistent with iron heme protein voltammetry. The −0.47 V peak had a peak potential and peak potential-pH dependence similar to that found for purified Chl a incorporated into DMPC films. The midpoint potentials reported here may differ to various extents from previously reported redox titration data due to the influence of electrode double-layer effects. Heterogeneous electron transfer (hET) rate constants were estimated by theoretical fitting and digital simulations for the −0.47 and 0.18 V peaks. Data for the Chl a peaks were best fit to a one-electron model, while the peak assigned to the Mn cluster was best fit by a two-electron/one-proton model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Agostiano A, Cosma P, Trotta M, Monsù-Scolaro L, Micali N (2002) Chlorophyll a behavior in aqueous solvents: formation of nanoscale self-assembled complexes. J Phys Chem B 106(49):12820–12829

    Article  CAS  Google Scholar 

  • Alcantara K, Munge B, Pendon Z, Frank HA, Rusling JF (2006) Thin film voltammetry of spinach photosystem II. Proton-gated electron transfer involving the Mn4 cluster. J Am Chem Soc 128:14930–14937

    Article  CAS  PubMed  Google Scholar 

  • Allakhverdiev S, Tomo T, Shimada Y, Kindo H, Nagao R, Klimov V, Mimuro M (2010) Redox potential of pheophytin a in photosystem II of two cyanobacteria having the different special pair chlorophylls. Proc Natl Acad Sci USA 107(8):3924–3929

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Allakhverdiev S, Tsuchiya T, Watabe K, Kojima A, Los D, Tomo T, Klimov V, Mimuro M (2011) Redox potentials of primary electron acceptor quinone molecule (QA)− and conserved energetics of photosystem II in cyanobacteria with chlorophyll a and chlorophyll d. Proc Natl Acad Sci USA 108(19):8054–8058

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Armstrong FA (1997) Applications of voltammetric methods for probing the chemistry of redox proteins. In: Lenz G, Milazzo G (eds) Bioelectrochemistry of Biomacromolecules. Birkhauser Verlag, Basel, pp 205–255

    Chapter  Google Scholar 

  • Armstrong FA, Wilson GS (2000) Recent developments in faradaic bioelectrochemistry. Electrochim Acta 45(15–16):2623–2645

    Article  CAS  Google Scholar 

  • Armstrong FA, Heering HA, Hirst J (1997) Reactions of complex metalloproteins studied by protein-film voltammetry. Chem Soc Rev 26:169–179

    Article  CAS  Google Scholar 

  • Badura A, Guschin D, Esper B, Kothe T, Neugebauer S, Schuhmann W (2008) Photo-induced electron transfer between photosystem 2 via cross-linked redox hydrogels. Electroanalysis 20:1043–1047

    Article  CAS  Google Scholar 

  • Barber J (2006) Photosystem II; an enzyme of global significance. Biochem Soc Trans 34:619–631

    Article  CAS  PubMed  Google Scholar 

  • Bard AJ, Faulkner LR (2002) Electrochemical methods: fundamentals and applications. Wiley, New York

    Google Scholar 

  • Bernát G, Morvaridi F, Feyziyev Y, Styring S (2002) pH dependence of the four individual transitions in the catalytic S-cycle during photosynthetic oxygen evolution. Biochemistry 41(18):5830–5843

    Article  PubMed  Google Scholar 

  • Berthold DA, Babcock GT, Yocum CF (1981) A highly resolved, oxygen-evolving photosystem II preparation from spinach thylakoid membranes. FEBS Lett 134:231–234

    Article  CAS  Google Scholar 

  • Bettazzi F, Laschi S, Mascini M (2007) One-shot screen-printed thylakoid membrane-based biosensor for the detection of photosynthetic inhibitors in discrete samples. Anal Chim Acta 589(1):14–21

    Article  CAS  PubMed  Google Scholar 

  • Bhalla V, Zhao X, Zazubovich V (2011) Detection of explosive compounds using photosystem II-based biosensor. J Electroanal Chem 657(1–2):84–90

    Article  CAS  Google Scholar 

  • Bricker TM, Frankel LK (1998) The structure and function of the 33 kDa extrinsic protein of photosystem II: a critical assessment. Photosynth Res 56(2):157–173

    Article  CAS  Google Scholar 

  • Bricker TM, Roose JL, Fagerlund RD, Frankel LK, Eaton-Rye JJ (2012) The extrinsic proteins of photosystem II. Biochim Biophys Acta 1817:121–142

    Article  CAS  PubMed  Google Scholar 

  • Britt RD (1996) Oxygen evolution. In: Ort, Yocum CF (eds) Oxygenic photosynthesis: the light reactions, vol 4. Kluwer Academic, Dordrecht, pp 137–164

    Google Scholar 

  • Buonasera K, Pezzotti G, Scognamiglio V, Tibuzzi A, Giardi MT (2010) New platform of biosensors for prescreening of pesticide residues to support laboratory analyses. J Agric Food Chem 58:5982–5990

    Article  CAS  PubMed  Google Scholar 

  • Cacace MG, Landau EM, Ramsden JJ (1997) The Hofmeister series: salt and solvent effects on interfacial phenomena. Q Rev Biophys 30(3):241–277

    Article  CAS  PubMed  Google Scholar 

  • Chen G, Han G, Göransson E, Mamedov F, Styring S (2012) Stability of the S3 and S2 state intermediates in photosystem II directly probed by EPR spectroscopy. Biochemistry 51(1):138–148

    Article  CAS  PubMed  Google Scholar 

  • Cosma P, Longobardi F, Agostiano A (2004) Electrochemical characterization of species involved in photosynthesis: from proteins to model systems. J Electroanal Chem 564:35–43

    Article  CAS  Google Scholar 

  • Das SK, Frank HA (2002) Pigment compositions, spectral properties, and energy transfer efficiencies between the xanthophylls and chlorophylls in the major and minor pigment–protein complexes of photosystem II. Biochemistry 41(43):13087–13095

    Article  CAS  PubMed  Google Scholar 

  • Debus RJ (1992) The manganese and calcium ions of photosynthetic oxygen evolution. Biochim Biophys Acta 1102:269–352

    Article  CAS  PubMed  Google Scholar 

  • Dekker JP, Boekema EJ (2005) Supramolecular organization of thylakoid membrane proteins in green plants. Biochim Biophys Acta 1706(1–2):12–39

    Article  CAS  PubMed  Google Scholar 

  • Diner BA, Babcock GT (1996) Structure, dynamics, and energy conversion efficiency in photosystem II. In: Ort, Yocum CF (eds) Oxygenic photosynthesis: the light reactions, vol 4. Kluwer Academic, Dordrecht, pp 213–247

    Google Scholar 

  • Enami I, Tohri A, Kamo M, Ohta H, Shen J-R (1997) Identification of domains on the 43 kDa chlorophyll-carrying protein (CP43) that are shielded from tryptic attack by binding of the extrinsic 33 kDa protein with photosystem II complex. Biochim Biophys Acta 1320(1):17–26

    Article  CAS  PubMed  Google Scholar 

  • Green BR (1988) The chlorophyll-protein complexes of higher plant photosynthetic membranes. Photosynth Res 15:3–32

    Article  CAS  PubMed  Google Scholar 

  • Hankamer B, Nield J, Zheleva D, Boekema E, Jansson S, Barber J (1997) Isolation and biochemical characterisation of monomeric and dimeric photosystem II complexes from spinach and their relevance to the organisation of photosystem II in vivo. Eur J Biochem 243(1–2):422–429

    Article  CAS  PubMed  Google Scholar 

  • Haumann M, Liebisch P, Müller C, Barra M, Grabolle M, Dau H (2005) Photosynthetic O2 formation tracked by time-resolved X-ray experiments. Science 310(5750):1019–1021

    Article  CAS  PubMed  Google Scholar 

  • Hirst J, Armstrong FA (1998) Fast-scan cyclic voltammetry of protein films on pyrolytic graphite edge electrodes: characteristics of electron exchange. Anal Chem 70(23):5062–5071

    Article  CAS  PubMed  Google Scholar 

  • Ido K, Gross C, Guerrero F, Sedoud A, Lai T-L, Ifuku K, Rutherford AW, Krieger- Liszkay A (2011) High and low potential forms of the QA quinone electron acceptor in photosystem II of thermosynechococcus elongatus and spinach. J Photochem Photobiol B 104(1–2):154–157

    Article  CAS  PubMed  Google Scholar 

  • Jeuken LJC, Jones AK, Chapman SK, Cecchini G, Armstrong FA (2002) Electron-transfer mechanisms through biological redox chains in multicenter enzymes. J Am Chem Soc 124(20):5702–5713

    Article  CAS  PubMed  Google Scholar 

  • Kato Y, Sugiura M, Oda A, Watanabe T (2009) Spectroelectrochemical determination of the redox potential of pheophytin a, the primary electron acceptor in photosystem II. Proc Natl Acad Sci USA 106(41):17365–17370

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kato M, Cardona T, Rutherford AW, Reisner E (2012a) Photoelectrochemical water oxidation with photosystem II integrated in a mesoporous indium–tin oxide electrode. J Am Chem Soc 134:8332–8335

    Article  CAS  PubMed  Google Scholar 

  • Kato Y, Shibamoto T, Yamamoto S, Watanabe T, Ishida N, Sugiura M, Rappaport F, Boussac A (2012b) Influence of the PsbA1/PsbA3, Ca(2+)/Sr(2+) and Cl(−)/Br(−) exchanges on the redox potential of the primary quinone Q(A) in photosystem II from thermosynechococcus elongatus as revealed by spectroelectrochemistry. Biochim Biophys Acta 1817(11):1998–2004

    Article  CAS  PubMed  Google Scholar 

  • Ke B (2001) Photosynthesis: photochemistry and photobiophysics, vol 10., Advances in photosynthesisKluwer Academic, Dordrecht

    Google Scholar 

  • Khanova LA, Tarasevich MR (1987) Electrochemistry and photoelectrochemistry of chlorophyll on a metallic electrode: part I. Properties of chlorophyll adsorption films on metals. J Electroanal Chem Interfacial Electrochem 227(1–2):99–114

    Article  CAS  Google Scholar 

  • Klimov VV, Allakhverdiev S, Demeter S, Krasnovsky AA (1979) Photoreduction of pheophytin in the photosystem II of chloroplasts depending on the oxidation-reduction potential of the medium. Doklady Akademii Nauk SSSR 249:227–230

    CAS  Google Scholar 

  • Knaff DB (1975) The effect of pH on the midpoint oxidation-reduction potentials of components associated with plant photosystem II. FEBS Lett 60(2):331–335

    Article  CAS  Google Scholar 

  • Krieger A, Rutherford AW, Johnson GN (1995) On the determination of redox midpoint potential of the primary quinone electron acceptor, QA, in Photosystem II. Biochim Biophys Acta-Bioenerg 1229(2):193–201

    Article  Google Scholar 

  • Krishnan S, Abeykoon A, Schenkman J, Rusling JF (2009) Control of electrochemical and ferryloxy formation kinetics of Cyt P450 s in polyion films by heme iron spin state and secondary structure. J Am Chem Soc 131(44):16215–16224

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kulik L, Epel B, Lubitz W, Messinger J (2007) Electronic structure of the Mn4OxCa cluster in the S0 and S2 states of the oxygen-evolving complex of photosystem II based on pulse 55Mn-ENDOR and EPR spectroscopy. J Am Chem Soc 129(44):13421–13435

    Article  CAS  PubMed  Google Scholar 

  • Laviron E (1979) General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J Electroanal Chem Interfacial Electrochem 101(1):19–28

    Article  CAS  Google Scholar 

  • Lvov Y (2000) Electrostatic layer-by-layer assembly of proteins and polyions. In: Lvov Y, Möhwald H (eds) Protein architecture: interfacing molecular assemblies and immobilization biotechnology. Marcel Dekker, New York, pp 125–167

    Google Scholar 

  • Lvov Y (2001) Thin film nanofabrication by alternate adsorption of polyions, nanoparticles, and proteins. In: Nalwa RW (ed) Handbook of surfaces and interfaces of materials, vol 3., Nanostructured materials, micelles and colloidsAcademic Press, San Diego, pp 170–189

    Google Scholar 

  • Maly J, Masojidek J, Masci A, Ilie M, Cianci E, Foglietti V, Vastarella W, Pilloton R (2005) Direct mediatorless electron transport between the monolayer of photosystem II and poly(mercapto-p-benzoquinone) modified gold electrode—new design of biosensor for herbicide detection. Biosens Bioelectron 21(6):923–932

    Article  CAS  PubMed  Google Scholar 

  • McEvoy JP, Brudvig GW (2006) Water-splitting chemistry of photosystem II. Chem Rev 106(11):4455–4483

    Article  CAS  PubMed  Google Scholar 

  • Metz JG, Ulmer G, Bricker TM, Miles D (1983) Purification of Cytochrome b-559 from oxygen-evolving photosystem II preparations of spinach and maize. Biochim Biophys Acta 725:203–209

    Article  CAS  Google Scholar 

  • Mishra RK, Ghanotakis DF (1994) Selective extraction of CP 26 and CP 29 proteins without affecting the binding of the extrinsic proteins (33, 23, 17 kDa) and the DCMU sensitivity of a Photosystem II core complex. Photosynth Res 42:37–42

    Article  CAS  PubMed  Google Scholar 

  • Munge B, Das SK, Ilagan RP, Pendon ZD, Yang J, Frank HA, Rusling JF (2003) Electron transfer reactions of redox cofactors in spinach photosystem I reaction center protein in lipid films on electrodes. J Am Chem Soc 125(4):12457–12463

    Article  CAS  PubMed  Google Scholar 

  • Nanba O, Satoh K (1987) Isolation of a photosystem II reaction center consisting of D1 and D2 polypeptides and cytochrome b 559. Proc Natl Acad Sci USA 84:109–112

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nassar A-EF, Zhang Z, Chynwat V, Frank HA, Rusling JF, Suga K (1995a) Orientation of myoglobin in cast multibilayer membranes of amphiphilic molecules. J Phys Chem 99(27):11013–11017

    Article  CAS  Google Scholar 

  • Nassar AEF, Narikiyo Y, Sagara T, Nakashima N, Rusling JF (1995b) Electrochemical properties of myoglobin embedded in Langmuir–Blodgett and cast films of synthetic lipids. J Chem Soc Faraday Trans 91(12):1775–1782

    Article  CAS  Google Scholar 

  • Nelson N, Yocum CF (2006) Structure and function of photosystems I and II. Annu Rev Plant Biol 57:521–565

    Article  CAS  PubMed  Google Scholar 

  • Nugent JA (1996) Oxygenic photosynthesis Electron transfer in photosystem I and photosystem II. Eur J Biochem 237:519–531

    Article  CAS  PubMed  Google Scholar 

  • Ortega J, Hervás M, Losada M (1990) Distinctive stability of the reduced and oxidized forms of high-potential cytochrome b-559 in photosystem II particles. Plant Sci 68(1):71–75

    Article  CAS  Google Scholar 

  • Rusling JF (1984) Computerized interpretation of electrochemical data using deviation-pattern recognition. Trends Anal Chem 3(4):91–94

    Article  CAS  Google Scholar 

  • Rusling JF (1998) Enzyme bioelectrochemistry in cast biomembrane-like films. Acc Chem Res 31:363–369

    Article  CAS  Google Scholar 

  • Rusling JF, Nassar AEF (1993) Enhanced electron transfer for myoglobin in surfactant films on electrodes. J Am Chem Soc 115(25):11891–11897

    Article  CAS  Google Scholar 

  • Rusling JF, Zhang Z (2001) Thin films on electrodes for direct protein electron transfer. In: Nalwa RW (ed) Handbook of surfaces and interfaces of materials, vol 5., Biomolecules, biointerfaces, and applicationsAcademic Press, San Diego, pp 33–71

    Chapter  Google Scholar 

  • Rusling JF, Zhang Z (2003) Designing functional biomarker films on electrodes. In: Rusling JF (ed) Biomolecular films. Marcel Dekker, New York, pp 1–64

    Chapter  Google Scholar 

  • Rusling JF, Wang B, Yun S-e (2008) Electrochemistry of redox enzymes. In: Bartlett PN (ed) Handbook of Bioelectrochemistry. Wiley, New York, pp 39–86

    Chapter  Google Scholar 

  • Rutherford AW, Styring S (1987) In the oxygen-evolving complex of photosystem II the S0 state is oxidized to the S1 state by D+ (signal IIslow). Biochemistry 26(9):2401–2405

    Article  Google Scholar 

  • Rutherford AW, Mullet JE, Crofts AR (1981) Measurement of the midpoint potential of the pheophytin acceptor of photosystem II. FEBS Lett 123(2):235–237

    Article  CAS  Google Scholar 

  • Satoh K, Wydrzynski TJ (2005) Photosystem II: the light driven water: plastoquinone oxidoreductase, vol 22. Springer, Dordrecht

    Google Scholar 

  • Seely GR, Jensen RG (1965) Effect of solvent on the spectrum of chlorophyll. Spectrochim Acta 21(10):1835–1845

    Article  CAS  Google Scholar 

  • Shibamoto T, Kato Y, Watanabe T (2008) Spectroelectrochemistry of cytochrome b559 in the D1–D2–Cyt b559 complex from spinach. FEBS Lett 582(10):1490–1494

    Article  CAS  PubMed  Google Scholar 

  • Shibamoto T, Kato Y, Sugiura M, Watanabe T (2009) Redox potential of the primary plastoquinone electron acceptor QA in photosystem II from Thermosynechococcus elongatus determined by spectroelectrochemistry. Biochemistry 48(45):10682–10684

    Article  CAS  PubMed  Google Scholar 

  • Shibamoto T, Kato Y, Nagao R, Yamazaki T, Tomo T, Watanabe T (2010) Species-dependence of the redox potential of the primary quinone electron acceptor QA in photosystem II verified by spectroelectrochemistry. FEBS Lett 584(8):1526–1530

    Article  CAS  PubMed  Google Scholar 

  • Shinopoulos KE, Brudvig GW (2012) Cytochrome b-559 and cyclic electron transfer within photosystem II. Biochim Biophys Acta-Bioenerg 1817(1):66–75

    Article  CAS  Google Scholar 

  • Stewart DH, Brudvig GW (1998) Cytochrome b 559 of photosystem II. Biochim Biophys Acta 1367:63–87

    Article  CAS  PubMed  Google Scholar 

  • Terasaki N, Iwai M, Yamamoto N, Hiraga T, Yamada S, Inoue Y (2008) Photocurrent generation properties of Histag-photosystem II immobilized on nanostructured gold electrode. Thin Solid Films 516(9):2553–2557

    Article  CAS  Google Scholar 

  • Tracewell CA, Cua A, Stewart DH, Bocian DF, Brudvig GW (2001) Characterization of carotenoid and chlorophyll photooxidation in photosystem II. Biochemistry 40:193–203

    Article  CAS  PubMed  Google Scholar 

  • Umena Y, Kawakami K, Shen J-R, Kamiya N (2011) Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å. Nature 473(7345):55–60

    Article  CAS  PubMed  Google Scholar 

  • Varsamis DG, Touloupakis E, Morlacchi P, Ghanotakis DF, Giardi MT, Cullen DC (2008) Development of a photosystem II-based optical microfluidic sensor for herbicide detection. Talanta 77:42–47

    Article  CAS  PubMed  Google Scholar 

  • Vass I, Styring S (1991) pH-dependent charge equilibria between tyrosine-d and the S states in photosystem II. Estimation of relative midpoint redox potentials. Biochemistry 30(3):830–839

    Article  CAS  PubMed  Google Scholar 

  • Vernon LP, Seely GR (eds) (1966) The chlorophylls. Academic Press, New York

    Google Scholar 

  • Vladkova R (2000) Chlorophyll a self-assembly in polar solvent-water mixtures. Photochem Photobiol 71(1):71–83

    Article  CAS  PubMed  Google Scholar 

  • Völker M, Ono T, Inoue Y, Renger G (1985) Effect of trypsin on PSII particles. Correlation between Hill- activity, Mn- abundance and peptide pattern. Biochim Biophys Acta-Bioenerg 806(1):25–34

    Article  Google Scholar 

  • Widger WR, Cramer WA, Hermodson M, Meyer D, Gullifor M (1984) Purification and partial amino acid sequence of the chloroplast cytochrome b-559. J Biol Chem 259:3870–3876

    CAS  PubMed  Google Scholar 

  • Yehezkeli O, Tel-Vered R, Wasserman J, Trifonov A, Michaeli D, Nechushtai R, Willner I (2012) Integrated photosystem II-based photo-bioelectrochemical cells. Nat Commun 3:742

    Article  PubMed  Google Scholar 

  • Zhang Y, LaFountain AM, Magdaong N, Fuciman M, Allen JP, Frank HA, Rusling JF (2011) Thin film voltammetry of wild type and mutant reaction center proteins from photosynthetic bacteria. J Phys Chem 115B:3226–3232

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by Grant MCB-0842500 from the National Science Foundation supported under the American Recovery and Reinvestment Act of 2009 and by the University of Connecticut Research Foundation. The authors thank Prof. Gary Brudvig of Yale University for advice on the PSII core complex preparation and oxygen evolution measurements, and Ms. Amy LaFountain for a critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Harry A. Frank or James F. Rusling.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1805 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., Magdaong, N., Frank, H.A. et al. Protein film voltammetry and co-factor electron transfer dynamics in spinach photosystem II core complex. Photosynth Res 120, 153–167 (2014). https://doi.org/10.1007/s11120-013-9831-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-013-9831-4

Keywords

Navigation