Skip to main content

Advertisement

Log in

Climate shocks and the timing of migration from Mexico

  • Original Paper
  • Published:
Population and Environment Aims and scope Submit manuscript

Abstract

Although evidence is increasing that climate shocks influence human migration, it is unclear exactly when people migrate after a climate shock. A climate shock might be followed by an immediate migration response. Alternatively, migration, as an adaptive strategy of last resort, might be delayed and employed only after available in situ (in-place) adaptive strategies are exhausted. In this paper, we explore the temporally lagged association between a climate shock and future migration. Using multilevel event-history models, we analyze the risk of Mexico-US migration over a seven-year period after a climate shock. Consistent with a delayed response pattern, we find that the risk of migration is low immediately after a climate shock and increases as households pursue and cycle through in situ adaptive strategies available to them. However, about 3 years after the climate shock, the risk of migration decreases, suggesting that households are eventually successful in adapting in situ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. The socioeconomic context will also shape the directionality of the migration response (Black et al. 2011a). In a Latin American context, adverse climatic conditions often lead to an increase in international out-migration (Feng and Oppenheimer 2012; Gray and Bilsborrow 2013; Hunter et al. 2013). A decline in international migration has been observed in a few case studies of the African continent (Gray and Mueller 2012a; Henry et al. 2004). Under conditions of extreme poverty, households may become “trapped” in place when adverse environmental conditions undermine the resource base to finance a move (Black et al. 2011b).

  2. The Mexican Migration Project (MMP) is a collaborative research project based at Princeton University and the University of Guadalajara. The MMP data are available at http://mmp.opr.princeton.edu.

  3. The first international migration can be considered a major event that is remembered with reasonable accuracy by most household members. As such, use of the first migration has the added benefit of guarding against recall bias.

  4. The phenomenon that households leave the dataset after the year they are surveyed is known in the event-history literature as “right censoring.” We retain right censored cases in the analysis based on the assumption that the censoring is non-informative, meaning that the time of migration is independent of the time a particular community was surveyed (Allison 1984; Steele 2005).

  5. While this omission could bias our estimates, the amount of error is likely to be small in rural areas where migrants are more likely to return (Cornelius 1992; Riosmena 2004). In addition, when the permanent relocation of the entire household was related to climate impacts, then the resulting sample of households will be less sensitive to climate shocks. In this way, the presented results can be considered conservative and likely underestimate the magnitude of the true climate–migration response.

  6. The expert team is jointly sponsored by the World Meteorological Organization (WMO) Commission for Climatology (CCl), the World Climate Research Programme (WCRP) project on Climate Variability and Predictability (CLIVAR), and the Joint WMO-Intergovernmental Oceanographic Commission (IOC) of the United Nations Educational, Scientific and Cultural Organization (UNESCO) Technical Commission for Oceanography and Marine Meteorology (JCOMM).

  7. Inspection of density, overimputation, and overdispersion plots suggested accurate performance of the imputation model (Honaker et al. 2011).

  8. Cokriging is based on regionalized variable theory (Matheron 1971) and uses the spatial trend and local spatial autocorrelation to inform predictions (Bolstad 2012; Hevesi et al. 1992). Cokriging has been frequently used to interpolate climate measures (e.g., Aznar et al. 2013; Garzon-Machado et al. 2014).

  9. With a 1-kilometer grid cell resolution, the DEM is based on remotely sensed images from the Shuttle Radar Topography Mission (SRTM), created and released by the US Geological Survey (USGS) and the National Geospatial-Intelligence Agency (NGA) (Danielson and Gesch 2011).

  10. We tested the accuracy of the cokriging procedure by using a bootstrap split-sample method in which 10 % of the stations were omitted from the interpolation and error values were computed at known locations. The low magnitude of error values and random distribution across space suggests that the interpolations produced reliable results.

  11. Unfortunately, measures of corn area harvested and percent irrigated farmland are only available for years after our study period. These variables were included to account for general differences in agricultural dependence and infrastructure availability. In our attempt to investigate changes in irrigation infrastructure, we were able to obtain a partial time series of the percent farmland irrigated for 25 of our 68 municipalities between 1994 and 2003. The average change in the proportion of farmland irrigated over this period was +0.003 % (SD = 7.27 %) and ranged from a minimum of −24.7 % to a maximum of +14.43 %. As such, the use of time-invariant measures to approximate historic conditions results in some uncertainty and the coefficient estimates should be interpreted with cautions.

  12. Information on the percentage of adults with migration experience, the wealth index, and the percentage of male labor force employed in the agricultural sector was available at decadal time steps. For these measures, we employed linear interpolation to obtain semi-time-varying predictor, as recommended by the event-history literature (Allison 1984).

  13. The year dummy variables account for unobserved changes, including policy changes, economic cycles, political events, technological advancements, and other climate shocks and natural disasters (Bohra-Mishra et al. 2014).

  14. For increased speed and improved convergence properties, we used the integer scalar setting of nAGQ = 0 so that the random-effects and the fixed-effects coefficients were optimized (optimizer = “bobyqa”) in the penalized iteratively reweighted least squares step (Bates et al. 2014).

  15. Appendix 2” reports a correlation matrix (Table 4) as well as the parameter estimates for household and municipality control variables (Table 5) included in the fully adjusted multilevel event-history model.

  16. We observed similar results for various other ETCCDI indices, including the % warm days (tx90p), the number of frost days (fd), the temperature during the coldest day (txn), the % cool nights (tn10p), and the total wet-day precipitation (prcptot). Results from different measures serve as a robustness test, suggesting that the reported functional form reflects a general pattern.

  17. The coefficients for “No. days heavy precip” reflects the effect of a one standard deviation decrease in precipitation.

References

  • Abu, M., Codjoe, S. N. A., & Sward, J. (2014). Climate change and internal migration intentions in the forest-savannah transition zone of Ghana. Population and Environment, 35(4), 341–364. doi:10.1007/s11111-013-0191-y.

    Article  Google Scholar 

  • Adger, W. N., Dessai, S., Goulden, M., Hulme, M., Lorenzoni, I., Nelson, D. R., & Wreford, A. (2009). Are there social limits to adaptation to climate change? Climatic Change, 93(3–4), 335–354. doi:10.1007/s10584-008-9520-z.

    Article  Google Scholar 

  • Alexander, L. V., Zhang, X., Peterson, T. C., Caesar, J., Gleason, B., Tank, A., & Vazquez-Aguirre, J. L. (2006). Global observed changes in daily climate extremes of temperature and precipitation. Journal of Geophysical Research-Atmospheres, 111(D5), 22. doi:10.1029/2005jd006290.

    Article  Google Scholar 

  • Allison, P. D. (1984). Event history analysis. Thousand Oaks, CA: Sage Publications.

    Book  Google Scholar 

  • Allison, P. D. (2002). Missing data. Thousand Oaks, CA: Sage Publications.

    Book  Google Scholar 

  • Angelucci, M. (2012). U.S. border enforcement and the net flow of Mexican illegal migration. Economic Development and Cultural Change, 60(2), 311–357.

    Article  Google Scholar 

  • Auffhammer, M., Hsiang, S. M., Schlenker, W., & Sobel, A. (2013). Using weather data and climate model output in economic analyses of climate change. Review of Environmental Economics and Policy, 7(2), 181–198. doi:10.1093/reep/ret016.

    Article  Google Scholar 

  • Aznar, J. C., Gloaguen, E., Tapsoba, D., Hachem, S., Caya, D., & Begin, Y. (2013). Interpolation of monthly mean temperatures using cokriging in spherical coordinates. International Journal of Climatology, 33(3), 758–769. doi:10.1002/joc.3468.

    Article  Google Scholar 

  • Barber, J. S., Murphy, S. A., Axinn, W. G., & Maples, J. (2000). Discrete-time multilevel hazard analysis. Sociological Methodology, 30(1), 201–235.

    Article  Google Scholar 

  • Bardsley, D. K., & Hugo, G. J. (2010). Migration and climate change: examining thresholds of change to guide effective adaptation decision-making. Population and Environment, 32(2–3), 238–262. doi:10.1007/s11111-010-0126-9.

    Article  Google Scholar 

  • Bates, D. M. (2010). lme4: Mixed-effects modeling with R. New York: Springer.

    Google Scholar 

  • Bates, D. M., Maechler, M., Bolker, B. M., & Walker, S. (2014). lme4: Linear mixed-effects models using Eigen and S4. Vienna, Austria: CRAN.R-project.org.

    Google Scholar 

  • Berkes, F., & Jolly, D. (2002). Adapting to climate change: Socialecological resilience in a Canadian western arctic community. Conservation Ecology, 5(2), 1–15.

    Google Scholar 

  • Black, R., Adger, W. N., Arnell, N. W., Dercon, S., Geddes, A., & Thomas, D. S. (2011a). The effect of environmental change on human migration. Global Environmental Change-Human and Policy Dimensions, 21, S3–S11. doi:10.1016/j.gloenvcha.2011.10.001.

    Article  Google Scholar 

  • Black, R., Arnell, N. W., Adger, W. N., Thomas, D., & Geddes, A. (2013). Migration, immobility and displacement outcomes following extreme events. Environmental Science & Policy, 27, S32–S43. doi:10.1016/j.envsci.2012.09.001.

    Article  Google Scholar 

  • Black, R., Bennett, S. R. G., Thomas, S. M., & Beddington, J. R. (2011b). Migration as adaptation. Nature, 478(7370), 447–449.

    Article  Google Scholar 

  • Bohra-Mishra, P., Oppenheimer, M., & Hsiang, S. M. (2014). Nonlinear permanent migration response to climatic variations but minimal response to disasters. Proceedings of the National Academy of Sciences of the United States of America, 111(27), 9780–9785. doi:10.1073/pnas.1317166111.

    Article  Google Scholar 

  • Bolstad, P. (2012). GIS fundamentals: A first text on geographic information systems (4th ed.). White Bear Lake, MN: Eider Press.

    Google Scholar 

  • Boyd, R., & Ibarraran, M. E. (2009). Extreme climate events and adaptation: an exploratory analysis of drought in Mexico. Environment and Development Economics, 14, 371–395. doi:10.1017/s1355770x08004956.

    Article  Google Scholar 

  • Bronaugh, D. (2014). R package climdex pcic: PCIC implementation of Climdex routines. Victoria, British Columbia, Canada: Pacific Climate Impact Consortium.

    Google Scholar 

  • Brown, S. K., & Bean, F. D. (2006). International Migration. In D. Posten & M. Micklin (Eds.), Handbook of population (pp. 347–382). New York: Springer Publishers.

    Google Scholar 

  • Bylander, M. (2013). Depending on the sky: Environmental distress, migration, and coping in rural Cambodia. International Migration, 53(5), 135–147. doi:10.1111/imig.12087.

    Article  Google Scholar 

  • Caesar, J., Alexander, L., & Vose, R. (2006). Large-scale changes in observed daily maximum and minimum temperatures: Creation and analysis of a new gridded data set. Journal of Geophysical Research-Atmospheres, 111(D5), 1–10. doi:10.1029/2005JD006280.

    Article  Google Scholar 

  • Cakir, R. (2004). Effect of water stress at different development stages on vegetative and reproductive growth of corn. Field Crops Research, 89(1), 1–16. doi:10.1016/j.fcr.2004.01.005.

    Article  Google Scholar 

  • Calavita, K. (1992). Inside the state: The bracero program, immigration, and the I.N.S.. New York: Routledge.

    Google Scholar 

  • Carney, D., Drinkwater, M., Rusinow, T., Neefjes, K., Wanmali, S., & Singh, N. (1999). Livelihoods approaches compared. London: Department for International Development.

    Google Scholar 

  • Carr, D. L., Lopez, A. C., & Bilsborrow, R. E. (2009). The population, agriculture, and environment nexus in Latin America: country-level evidence from the latter half of the twentieth century. Population and Environment, 30(6), 222–246. doi:10.1007/s11111-009-0090-4.

    Article  Google Scholar 

  • Christensen, J. H., Krishna Kumar, K., Aldrian, E., An, S. I., Cavalcanti, I. F. A., de Castro, M., & Zhou, T. (2013). Climate phenomena and their relevance for future regional climate change. In T. F. Stocker, D. Qin, G. K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, & P. M. Midgley (Eds.), Climate change 2013: The physical science basis: Contribution of Working Group 1 to the fifth assessment report of the Intergovernmental Panel on Climate Change. New York: Cambridge University Press.

    Google Scholar 

  • Cohen, J. H. (2004). The culture of migration in Southern Mexico. Austin, TX: University of Texas Press.

    Google Scholar 

  • Collins, M., Knutti, R., Arblaster, J., Dufresne, J. L., Fichefet, T., Friedlingstein, P., & Wehner, M. (2013). Long-term climate change: Projections, commitments and irreversibility. In T. F. Stocker, D. Qin, G. K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, & P. M. Midgley (Eds.), Climate change 2013: The physical science basis: Contribution of working group 1 to the fifth assessment report of the Intergovernmental Panel on Climate Change. New York: Cambridge University Press.

    Google Scholar 

  • Conde, C., Ferrer, R., & Orozco, S. (2006). Climate chage and climate variability impacts on rainfed agricultural activities and possible adaptation measures. A Mexico case study. Atmosfera, 19(3), 181–194.

    Google Scholar 

  • Cornelius, W. A. (1992). From sojourners to settlers: The changing profile of Mexican migration to the United States. In J. A. Bustamante, C. W. Reynolds, & R. A. Hinojosa Ojeda (Eds.), U.S.-Mexico relations: Labor market interdependence (pp. 155–195). Stanford, CA: Stanford University Press.

    Google Scholar 

  • Danielson, J. J., & Gesch, D. B. (2011). Global multi-resolution terrain elevation data 2010 (GMTED2010): Open-File Report 2011-1073. Reston, Virginia: U.S. Geological Survey.

    Google Scholar 

  • de Haas, H. (2011). Mediterranean migration futures: Patterns, drivers and scenarios. Global Environmental Change-Human and Policy Dimensions, 21, S59–S69. doi:10.1016/j.gloenvcha.2011.09.003.

    Article  Google Scholar 

  • de Janvry, A., & Sadoulet, E. (2001). Income strategies among rural households in Mexico: The role of off-farm activities. World Development, 29(3), 467–480.

    Article  Google Scholar 

  • Dow, K., Berkhout, F., Preston, B. L., Klein, R. J. T., Midgley, G., & Shaw, M. R. (2013). Commentary: Limits to adaptation. Nature Climate Change, 3(4), 305–307.

    Article  Google Scholar 

  • Durand, J., & Arias, P. (2000). La experiencia migrante: Iconografia de la migracion Mexico-Estados Unidos. Xalapa, Mexico: Altexto.

    Google Scholar 

  • Durand, J., Parrado, E. A., & Massey, D. S. (1996). Migradollars and development: A reconsideration of the Mexican case. International Migration Review, 30(2), 423–444. doi:10.2307/2547388.

    Article  Google Scholar 

  • Endfield, G. H. (2007). Archival explorations of climate variability and social vulnerability in colonial Mexico. Climatic Change, 83(1–2), 9–38. doi:10.1007/s10584-006-9125-3.

    Article  Google Scholar 

  • Feng, S., & Oppenheimer, M. (2012). Applying statistical models to the climate-migration relationship. Proceedings of the National Academy of Science, 109(43), E2915.

    Article  Google Scholar 

  • Findlay, A. M. (2011). Migrant destinations in an era of environmental change. Global Environmental Change-Human and Policy Dimensions, 21, S50–S58. doi:10.1016/j.gloenvcha.2011.09.004.

    Article  Google Scholar 

  • Fischer, P. A., & Malmberg, G. (2001). Settled people don’t move: On life course and (im-)mobility in Sweden. International Journal of Population Geography, 7, 357–371.

    Article  Google Scholar 

  • Fussell, E. (2004). Sources of Mexico’s migration stream: Rural, urban, and border migrants to the United States. Social Forces, 82(3), 937–967. doi:10.1353/sof.2004.0039.

    Article  Google Scholar 

  • Fussell, E., & Massey, D. S. (2004). The limits to cumulative causation: International migration from Mexican urban areas. Demography, 41(1), 151–171.

    Article  Google Scholar 

  • Garzon-Machado, V., Otto, R., & Aguilar, M. J. D. (2014). Bioclimatic and vegetation mapping of a topographically complex oceanic island applying different interpolation techniques. International Journal of Biometeorology, 58(5), 887–899. doi:10.1007/s00484-013-0670-y.

    Google Scholar 

  • Gray, C. L. (2009). Environment, land, and rural out-migration in the Southern Ecuadorian Andes. World Development, 37(2), 457–468. doi:10.1016/j.worlddev.2008.05.004.

    Article  Google Scholar 

  • Gray, C. L. (2010). Gender, natural capital, and migration in the southern Ecuadorian Andes. Environment and Planning, 42, 678–696.

    Article  Google Scholar 

  • Gray, C. L., & Bilsborrow, R. (2013). Environmental influences on human migration in rural ecuador. Demography, 50, 1217–1241. doi:10.1007/s13524-012-0192-y.

    Article  Google Scholar 

  • Gray, C. L., & Mueller, V. (2012a). Drought and population mobility in rural Ethiopia. World Development, 40(1), 134–145. doi:10.1016/j.worlddev.2011.05.023.

    Article  Google Scholar 

  • Gray, C. L., & Mueller, V. (2012b). Natural disasters and population mobility in Bangladesh. Proceedings of the National Academy of Sciences of the United States of America, 109(16), 6000–6005. doi:10.1073/pnas.1115944109.

    Article  Google Scholar 

  • Hamilton, E. R., & Villarreal, A. (2011). Development and the urban and rural geography of Mexican emigration to the United States. Social Forces, 90(2), 661–683. doi:10.1093/sf/sor011.

    Article  Google Scholar 

  • Henry, S., Schoumaker, B., & Beauchemin, C. (2004). The impact of rainfall on the first out-migration: A multi-level event-history analysis in Burkina Faso. Population and Environment, 25(5), 423–460.

    Article  Google Scholar 

  • Hevesi, J. A., Istok, J. D., & Flint, A. L. (1992). Precipitation estimation in mountainous terrain using multivariate geostatistics. 1. Structural-analysis. Journal of Applied Meteorology, 31(7), 661–676. doi:10.1175/1520-0450(1992)031<0661:peimtu>2.0.co;2.

    Article  Google Scholar 

  • Honaker, J., & King, G. (2010). What to do about missing values in time-series cross-section data. American Journal of Political Science, 54(2), 561–581.

    Article  Google Scholar 

  • Honaker, J., King, G., & Blackwell, M. (2011). Amelia II: A program for missing data. Journal of Statistical Software, 45(7), 1–47.

    Article  Google Scholar 

  • Howden, S. M., Soussana, J.-F., Tubiello, F. N., Chhetri, N., Dunlop, M., & Meinke, H. (2007). Adapting agriculture to climate change. Proceedings of the National Academy of Sciences of the United States of America, 104(50), 19691–19696. doi:10.1073/pnas.0701890104.

    Article  Google Scholar 

  • Hunter, L. M., Luna, J. K., & Norton, R. M. (2015). Environmental dimensions of migration. Annual Review of Sociology, 41, 377–397. doi:10.1146/annurev-soc-073014-112223.

    Article  Google Scholar 

  • Hunter, L. M., Murray, S., & Riosmena, F. (2013). Rainfall patterns and U.S. migration from rural Mexico. International Migration Review, 47(4), 874–909.

    Article  Google Scholar 

  • Hunter, L. M., Nawrotzki, R. J., Leyk, S., Maclaurin, G. J., Twine, W., Collinson, M., & Erasmus, B. (2014). Rural outmigration, natural capital, and livelihoods in South Africa. Population, Space, and Place, 20, 402–420. doi:10.1002/psp.1776.

    Article  Google Scholar 

  • INEGI. (2012). Sistema Estatal y Municipal de Bases de Datos. Aguascalientes, Mexico: Instituto Nacional de Estadística, Geografía e Informática.

    Google Scholar 

  • IPCC. (2012). In C. B. Field, V. Barros, T. F. Stocker, D. Qin, D. J. Dokken, K. L. Ebi, M. D. Mastrandrea, K. J. Mach, G. K. Plattner, S. K. Allen, M. Tignor, & P. M. Midgley (Eds.), Managing the risks of extreme events and disasters to advance climate change adaptation: A special report of working groups I and II of the Intergovernmental Panel on Climate Change. New York, NY: Cambridge University Press.

    Google Scholar 

  • IPCC. (2013). Summary for Policymakers. In T. F. Stocker, D. Qin, G. K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, & P. M. Midgley (Eds.), Climate change 2013: The physical science basis: Contribution of Working Group 1 to the fifth assessment report of the intergovernmental panel on climate change (pp. 1–30). Cambridge, United Kingdom: Cambridge University Press.

    Google Scholar 

  • Kanaiaupuni, S. M. (2000). Reframing the migration question: An analysis of men, women, and gender in Mexico. Social Forces, 78(4), 1311–1347. doi:10.2307/3006176.

    Article  Google Scholar 

  • Kandel, W., & Massey, D. S. (2002). The culture of Mexican migration: A theoretical and empirical analysis. Social Forces, 80(3), 981–1004. doi:10.1353/sof.2002.0009.

    Article  Google Scholar 

  • Keleman, A., Hellin, J., & Bellon, M. R. (2009). Maize diversity, rural development policy, and farmers’ practices: lessons from Chiapas, Mexico. Geographical Journal, 175, 52–70. doi:10.1111/j.1475-4959.2008.00314.x.

    Article  Google Scholar 

  • Klein Tank, A. M. G., Peterson, T. C., Quadir, D. A., Dorji, S., Zou, X., Tang, H., & Spektorman, T. (2006). Changes in daily temperature and precipitation extremes in central and south Asia. Journal of Geophysical Research-Atmospheres, 111(D16), 1–8. doi:10.1029/2005jd006316.

    Article  Google Scholar 

  • Kugler, T. A., Van Riper, D. C., Manson, S. M., Haynes, D. A., Donato, J., & Stinebaugh, K. (2015). Terra Populus: Workflows for integrating and harmonizing geospatial population and environmental data. Journal of Map and Geography Libraries, 11(2), 180–206. doi:10.1080/15420353.2015.1036484.

    Article  Google Scholar 

  • Lindstrom, D. P., & Lauster, N. (2001). Local economic opportunity and the competing risks of internal and US migration in Zacatecas. Mexico. International Migration Review, 35(4), 1232–1256.

    Article  Google Scholar 

  • Little, R. J. A., & Rubin, D. B. (2002). Statistical analysis with missing data (2nd (edition ed.). New York: John Wiley and Sons.

    Google Scholar 

  • Lobell, D. B., & Field, C. B. (2007). Global scale climate - crop yield relationships and the impacts of recent warming. Environmental Research Letters, 2(1), 1–7. doi:10.1088/1748-9326/2/1/014002.

    Article  Google Scholar 

  • LoBreglio, K. (2004). The border security and immigration improvement act a modern solution to a historic problem. St. John’s Law Review, 78(3), 933–963.

    Google Scholar 

  • Luers, A. L., Lobell, D. B., Sklar, L. S., Addams, C. L., & Matson, P. A. (2003). A method for quantifying vulnerability, applied to the agricultural system of the Yaqui Valley, Mexico. Global Environmental Change-Human and Policy Dimensions, 13(4), 255–267. doi:10.1016/s0959-3780(03)00054-2.

    Article  Google Scholar 

  • Lustig, N. (1990). Economic-crisis, adjustment and living standards in Mexico, 1982-85. World Development, 18(10), 1325–1342. doi:10.1016/0305-750x(90)90113-c.

    Article  Google Scholar 

  • Marra, M., Pannell, D. J., & Ghadim, A. A. (2003). The economics of risk, uncertainty and learning in the adoption of new agricultural technologies: where are we on the learning curve? Agricultural Systems, 75(2–3), 215–234. doi:10.1016/s0308-521x(02)00066-5.

    Article  Google Scholar 

  • Martin, P. L. (1990). Harvest of confusion: Immigration reform and California agriculture. International Migration Review, 24(1), 69–95. doi:10.2307/2546672.

    Article  Google Scholar 

  • Massey, D. S. (1987). The Ethnosurvey in theory and practice. International Migration Review, 21(4), 1498–1522. doi:10.2307/2546522.

    Article  Google Scholar 

  • Massey, D. S., Alarcon, R., Durand, J., & Gonzalez, H. (1987). Return to Aztlan: The social process of international migration from Western Mexico. Berkely, CA: University of California Press.

    Google Scholar 

  • Massey, D. S., Arango, J., Hugo, G., Kouaouci, A., Pellegrino, A., & Taylor, J. E. (1993). Theories of international migration—A review and appraisal. Population and Development Review, 19(3), 431–466.

    Article  Google Scholar 

  • Massey, D. S., Arango, J., Hugo, G., Kouaouci, A., Pellegrino, A., & Taylor, E. J. (1998). Worlds in motion: Understanding international migration at the end of the millennium. Oxford: Oxford University Press.

    Google Scholar 

  • Massey, D. S., & Capoferro, C. (2004). Measuring undocumented migration. International Migration Review, 38(3), 1075–1102.

    Article  Google Scholar 

  • Massey, D. S., Durand, J., & Malone, N. J. (2002). Beyond smoke and mirrors: Mexican immigration in an era of economic integration. New York: Russell Sage Foundation Publications.

    Google Scholar 

  • Massey, D. S., Durand, J., & Pren, K. A. (2015). Border enforcement and return migration by documented and undocumented Mexicans. Journal of Ethnic and Migration Studies, 41(7), 1015–1040. doi:10.1080/1369183x.2014.986079.

    Article  Google Scholar 

  • Massey, D. S., & Espinosa, K. E. (1997). What’s driving Mexico-US migration? A theoretical, empirical, and policy analysis. American Journal of Sociology, 102(4), 939–999. doi:10.1086/231037.

    Article  Google Scholar 

  • Massey, D. S., Goldring, L., & Durand, J. (1994). Continuities in transnational migration: An analysis of nineteen Mexican communities. American Journal of Sociology, 99(6), 1492–1533.

    Article  Google Scholar 

  • Massey, D. S., & Parrado, E. A. (1998). International migration and business formation in Mexico. Social Science Quarterly, 79(1), 1–20.

    Google Scholar 

  • Massey, D. S., & Riosmena, F. (2010). Undocumented migration from Latin America in an era of rising U.S. enforcement. Annals of the American Academy of Political and Social Science, 630, 294–321.

    Article  Google Scholar 

  • Massey, D. S., & Zenteno, R. (2000). A validation of the ethnosurvey: The case of Mexico-US migration. International Migration Review, 34(3), 766–793. doi:10.2307/2675944.

    Article  Google Scholar 

  • Matheron, G. (1971). The theory of regionalized variables and its applications. Paris, France: Ecole Nationale Superieur des Mines de Paris.

    Google Scholar 

  • Mberu, B. U. (2006). Internal migration and household living conditions in Ethiopia. Demographic Research, 14, 509–539. doi:10.4054/DemRes.2006.14.21.

    Article  Google Scholar 

  • McKenzie, D. J. (2006). The consumer response to the Mexican peso crisis. Economic Development and Cultural Change, 55(1), 139–172. doi:10.1086/505721.

    Article  Google Scholar 

  • McLeman, R. A. (2011). Settlement abandonment in the context of global environmental change. Global Environmental Change, 21, S108–S120.

    Article  Google Scholar 

  • McLeman, R. A. (2014). Climate and human migration: Past experiences, future challenges. Cambridge, U.K.: Cambridge University Press.

    Google Scholar 

  • Menne, M. J., Durre, I., Vose, R. S., Gleason, B. E., & Houston, T. G. (2012). An overview of the global historical climatology network-daily database. Journal of Atmospheric and Oceanic Technology, 29(7), 897–910. doi:10.1175/jtech-d-11-00103.1.

    Article  Google Scholar 

  • Montgomery, M. R., Gragnolati, M., Burke, K. A., & Paredes, E. (2000). Measuring living standards with proxy variables. Demography, 37(2), 155–174.

    Article  Google Scholar 

  • MPC. (2013a). Integrated Public Use Microdata Series, International: Version 6.2 [Machine-readable database]. Minneapolis, MN: University of Minnesota.

    Google Scholar 

  • MPC. (2013b). Terra Populus: Beta Version [Machine-readable database]. Minneapolis, MN: Minnesota Population Center, University of Minnesota.

    Google Scholar 

  • Mueller, V., Gray, C. L., & Kosec, K. (2014). Heat stress increases long-term human migration in rural Pakistan. Nature Climate Change, 4(3), 182–185. doi:10.1038/nclimate2103.

    Article  Google Scholar 

  • Nawrotzki, R. J. (2012). The politics of environmental concern: A cross-national analysis. Organization & Environment, 25(3), 286–307. doi:10.1177/1086026612456535.

    Article  Google Scholar 

  • Nawrotzki, R. J., Hunter, L. M., Runfola, D. M., & Riosmena, F. (2015a). Climate change as migration driver from rural and urban Mexico. Environmental Research Letters, 10(11), 114023. doi:10.1088/1748-9326/10/11/114023.

    Article  Google Scholar 

  • Nawrotzki, R. J., Riosmena, F., & Hunter, L. M. (2013). Do rainfall deficits predict U.S.-bound migration from rural Mexico? Evidence from the Mexican census. Population Research and Policy Review, 32(1), 129–158. doi:10.1007/s11113-012-9251-8.

    Article  Google Scholar 

  • Nawrotzki, R. J., Riosmena, F., Hunter, L. M., & Runfola, D. M. (2015b). Amplification or suppression: Social networks and the climate change-migration association in rural Mexico. Global Environmental Change, 35, 463–474. doi:10.1016/j.gloenvcha.2015.09.002.

    Article  Google Scholar 

  • Orrenius, P. M., & Zavodny, M. (2003). Do amnesty programs reduce undocumented immigration? Evidence from IRCA Demography, 40(3), 437–450. doi:10.2307/1515154.

    Article  Google Scholar 

  • Osbahr, H., Twyman, C., Adger, W. N., & Thomas, D. S. G. (2008). Effective livelihood adaptation to climate change disturbance: Scale dimensions of practice in Mozambique. Geoforum, 39(6), 1951–1964. doi:10.1016/j.geoforum.2008.07.010.

    Article  Google Scholar 

  • Peterson, T. C., Folland, C., Gruza, G., Hogg, W., Mokssit, A., & Plummer, N. (2001). Report of the activities of the working group on climate change detection and related rapporteurs. Geneva, Switzerland: World Meteorological Organization.

    Google Scholar 

  • Peterson, T. C., & Manton, M. J. (2008). Monitoring changes in climate extremes—A tale of international collaboration. Bulletin of the American Meteorological Society, 89(9), 1266–1271. doi:10.1175/2008bams2501.1.

    Article  Google Scholar 

  • RCoreTeam. (2015). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.

    Google Scholar 

  • Riosmena, F. (2004). Return Versus Settlement Among Undocumented Mexican Migrants, 1980 to 1996. In J. Durand & D. S. Massey (Eds.), Crossing the border: Research from the Mexican migration project (pp. 265–280). New York: Russell Sage Foundation.

    Google Scholar 

  • Riosmena, F. (2009). Socioeconomic context and the association between marriage and Mexico-US migration. Social Science Research, 38(2), 324–337. doi:10.1016/j.ssresearch.2008.12.001.

    Article  Google Scholar 

  • Rubin, D. (1987). Multiple imputation for nonresponse in surveys. New York: Wiley.

    Book  Google Scholar 

  • Ruggles, S., King, M. L., Levison, D., McCaa, R., & Sobek, M. (2003). IPUMS-international. Historical Methods, 36(2), 60–65.

    Article  Google Scholar 

  • Ruiter, S., & De Graaf, N. D. (2006). National context, religiosity, and volunteering: Results from 53 countries. American Sociological Review, 71(2), 191–210.

    Article  Google Scholar 

  • Saldana-Zorrilla, S. O., & Sandberg, K. (2009). Spatial econometric model of natural disaster impacts on human migration in vulnerable regions of Mexico. Disasters, 33(4), 591–607. doi:10.1111/j.0361-3666.2008.01089.x.

    Article  Google Scholar 

  • Schroth, G., Laderach, P., Dempewolf, J., Philpott, S., Haggar, J., Eakin, H., & Ramirez-Villegas, J. (2009). Towards a climate change adaptation strategy for coffee communities and ecosystems in the Sierra Madre de Chiapas, Mexico. Mitigation and Adaptation Strategies for Global Change, 14(7), 605–625. doi:10.1007/s11027-009-9186-5.

    Article  Google Scholar 

  • Scoones, I. (1999). Sustainable rural livelihoods: A framework for analysis. Brighton, U.K.: Institute of Development Studies.

    Google Scholar 

  • Singer, J. D., & Willett, J. B. (2003). Applied longitudinal data analysis: Modeling change and event occurrence. New York: Oxford University Press.

    Book  Google Scholar 

  • Stahle, D. W., Cook, E. R., Villanueva Diaz, J., Fye, F. K., Burnette, D. J., Griffin, R. D., & Heim, R. R. (2009). Early 21st-Century drought in Mexico. EOS Transactions of the American Geographical Union, 90(11), 89–100.

    Article  Google Scholar 

  • Stark, O., & Bloom, D. E. (1985). The new economics of labor migration. American Economic Review, 75(2), 173–178.

    Google Scholar 

  • Steele, F. (2005). Event history analysis. Bristol, U.K.: ESRC National Centre for Research Methods.

    Google Scholar 

  • Steele, F., Diamond, I., & Amin, S. (1996). Immunization uptake in rural Bangladesh: A multilevel analysis. Journal of the Royal Statistical Society Series a-Statistics in Society, 159, 289–299. doi:10.2307/2983175.

    Article  Google Scholar 

  • Steele, F., Goldstein, H., & Browne, W. (2004). A general multilevel multistate competing risks model for event history data, with an application to a study of contraceptive use dynamics. Statistical Modelling, 4(2), 145–159. doi:10.1191/1471082X04st069oa.

    Article  Google Scholar 

  • Taylor, J. E. (1999). The new economics of labour migration and the role of remittances in the migration process. International Migration, 37(1), 63–88.

    Article  Google Scholar 

  • Warner, K., & van der Geest, K. (2013). Loss and damage from climate change: local-level evidence from nine vulnerable countries. International Journal of Global Warming, 5(4), 367–386. doi:10.1504/ijgw.2013.057289.

    Article  Google Scholar 

  • Wehner, M., Easterling, D. R., Lawrimore, J. H., Heim, R. R, Jr, Vose, R. S., & Santer, B. D. (2011). Projections of future drought in the continental United States and Mexico. Journal of Hydrometeorology, 12(6), 1359–1377. doi:10.1175/2011jhm1351.1.

    Article  Google Scholar 

  • Wiggins, S., Keilbach, N., Preibisch, K., Proctor, S., Herrejon, G. R., & Munoz, G. R. (2002). Discussion—Agricultural policy reform and rural livelihoods in central Mexico. Journal of Development Studies, 38(4), 179–202. doi:10.1080/00220380412331322461.

    Article  Google Scholar 

  • Williams, N. (2015). Temporal dimensions of weather shocks. Paper presented at the Annual meeting of the Population Association of America, San Diego, CA.

  • Winters, P., Davis, B., & Corral, L. (2002). Assets, activities and income generation in rural Mexico: factoring in social and public capital. Agricultural Economics, 27(2), 139–156.

    Article  Google Scholar 

Download references

Acknowledgments

This research is supported by NIH center Grants #R24 HD041023 awarded to the Minnesota Population Center at the University of Minnesota and #R24 HD066613 awarded to the Colorado Population Center at the University of Colorado-Boulder by the Eunice Kennedy Shriver National Institute for Child Health and Human Development (NICHD). In addition, this work received support from the National Science Foundation funded Terra Populus project (NSF Award ACI-0940818). We thank Rachel Magennis for her careful editing and helpful suggestions. We express our gratitude to the POEN editor and three anonymous reviewers for their insightful comments on earlier drafts of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raphael J. Nawrotzki.

Appendices

Appendix 1: Definition of climate measures

Warm spell duration index (wsdi): The warm spell duration index is defined as the annual count of days when at least six consecutive days surpassed the 90th percentile of the maximum temperature of the baseline period (1961–1990). Let TX ij be the daily maximum temperature on day i in period j and let TX in 90 be the calendar day 90th percentile centered on a 5-day window for the base period 1961–1990. The warm spell duration can then be computed as the period specific count of days N j with at least 6 consecutive days where TX ij  > TX in 90 (Eq. 2).

$$ wsdi_{j} = N_{{j(TX_{ij} > TX_{in} 90,N \ge 6)}} $$
(2)

No. days heavy precip (r10mm ): The no. of days of heavy precipitation is defined as the annual count of days with more than 10 mm of precipitation. Let RR ij be the daily precipitation amount on day i in period j. The number of days with heavy precipitation is then computed as the count of days N where RR ij  ≥ 10 mm (Eq. 3).

$$ \text{r} 1 0\,{\text{mm}}_{j} = N_{{(RR_{ij} \ge 10\,{\text{mm}})}} $$
(3)

For a full list of ETCCDI indices and their technical definitions, see http://etccdi.pacificclimate.org/list_27_indices.shtml.

Appendix 2: Correlation matrix and parameter estimates of control variables

Table 4 provides a matrix of correlations of outcome and substantive predictor variables employed in the investigation of the timing of international migration in response to climate shocks from rural Mexico during 1986–1999.

Table 4 Correlation matrix

The decision to migrate is influenced by various socio-demographic factors (Brown and Bean 2006). Table 5 shows multilevel event-history models, including only household-level variables (Model 1), and then adding municipality-level predictors (Model 2). In line with much prior work on Mexican migration, the models suggest that the typical migrant household is male-headed (Lindstrom and Lauster 2001), has few young children (Massey and Riosmena 2010; Nawrotzki et al. 2013), is employed in a blue-collar occupation with limited work experience (Fussell 2004; Massey et al. 1987), and does not own property or a business (cf., Massey and Parrado 1998). Only a few municipality characteristics influence the probability to migrate. The probability to migrate is strongly elevated for communities with large proportions of adults with prior international migration experience, testifying to the importance of social networks (Fussell 2004; Massey and Espinosa 1997; Massey et al. 1994). In addition, households are less likely to migrate from areas with historically warm temperatures, which likely reflects that most migrants come from the cooler west-central parts of Mexico, instead of the hot arid northern border states (Hamilton and Villarreal 2011).

Table 5 Parameter estimates derived from multilevel event-history models for household and municipality control variables to predict international migration from rural Mexico, 1986–1999

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nawrotzki, R.J., DeWaard, J. Climate shocks and the timing of migration from Mexico. Popul Environ 38, 72–100 (2016). https://doi.org/10.1007/s11111-016-0255-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11111-016-0255-x

Keywords

Navigation