Skip to main content
Log in

The Influence of Thermomechanical Treatment on the Strain Behavior of the Fe–Ni–Co–Ti Ferromagnetic Alloy Nanocomposite with Shape Memory Effect

  • Published:
Powder Metallurgy and Metal Ceramics Aims and scope

The paper describes mechanical tests of a nanocomposite produced from the ferromagnetic shape memory Fe−Ni−Co−Ti alloy under uniaxial tension over a wide temperature range. The production of the nanocomposite was preceded by preliminary thermomechanical treatment (TMT), involving drawing, quenching, and ageing, for precipitation hardening. The TMT imparted high superelastic strain and shape memory effect to the nanocomposite. The preliminary TMT with strain ψ = = 7.4−22.5% aged at T = 650°C for 5−10 min was experimentally found to correspond to the optimal combination of the maximum superelastic strain and shape memory effect. This contributed to the phase and twinning plastic deformation of the nanocomposite over the test temperature range Ms < Ttest < Af (where Ms is the start temperature of forward martensitic transformation on cooling and Af is the finish temperature of reverse martensitic transformation on heating). A plateau with constant stress was found in the two-phase Mf < Ttest < Ms region on the tensile curve at drawing strain ψ = 22.5%. A significant increase in the preliminary strain (more than 40%) substantially stabilized the austenitic matrix, thus inhibiting the martensitic transformation and reducing reversible effects because the austenite grain size refines when the lattice defect density increases. The austenite grain size distribution was assessed versus the chosen TMT conditions. When the austenite grain size increased, the superelastic strain recovery became higher. The factors leading to greater superelasticity were analyzed within different phenomenological models. The TMT has a crucial role in the variation of structure and mechanical properties, in turn promoting inelastic effects at different temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

References

  1. E.P. George, R. Gotthardt, K. Otsuka, S. Trolier-McKinstry, and M. Wun-Fogle, “Materials for smart systems II,” in: Symp. Proc. Mater. Res. Soc., Materials Research Society, Pittsburgh, USA (1997), Vol. 459, pp. 489–493.

    Google Scholar 

  2. K. Otsuka and C.M. Wayman, Shape Memory Materials, Cambridge University Press, Cambridge (1998), p. 284.

    Google Scholar 

  3. V.V. Kokorin, Martensitic Transformations in Heterogeneous Solid Solutions [in Russian], Naukova Dumka, Kyiv (1987), p. 168.

    Google Scholar 

  4. V.A. Lobodyuk and E.I. Estrin, Martensitic Transformations [in Russian], Fizmatlit, Moscow (2009).

    Google Scholar 

  5. Yu.I. Chumlyakov, I.V. Kireeva, E.Yu. Panchenko, E.E. Timofeeva, I.V. Kretinina, O.A. Kuts, I. Karaman, and H. Maier, “Shape memory effect and superelasticity in [001] single crystals of the FeNiCoAlTa alloy with γ–α' thermoelastic martensitic transformations,” Izv. VUZ. Fiz., 567, No. 8, 66–74 (2013).

    Google Scholar 

  6. Y.I. Chumlyakov, I.V. Kireeva, O.A. Kuts, Y.N. Platonova, V.V. Poklonov, I.V. Kukshauzen, D.A. Kukshauzen, M.Y. Panchenko, and K.A. Reunova, “Thermoelastic martensitic transformations in single crystals of FeNiCoAlX(B),” Alloys, 58, No. 11, 1549–1556 (2016).

    CAS  Google Scholar 

  7. Y. Tanaka, Y. Himuro, R. Kainuma, Y. Sutou, T. Omori, and K. Ishida, “Ferrous polycrystalline shape memory alloy showing huge superelasticity,” Science, 327, 1488–1490 (2010).

    Article  CAS  Google Scholar 

  8. J. Perkins, Shape Memory Effects in Alloys, Plenum Press, New York (1975), pp. 305–325.

    Book  Google Scholar 

  9. N. Jost, “Reversible transformation and shape memory effects due to thermomechanical treatments of Fe–Ni–Co-based austenites,” Mater. Sci. Forum, 56–58, 667–672 (1990).

    Google Scholar 

  10. T. Kakeshita and K. Shimizu, “Effects of hydrostatic pressure on martensitic transformations,” Mat. Trans. JIM, 38, 668–681 (1997).

    Article  CAS  Google Scholar 

  11. V.V. Kokorin, Yu.I. Samsonov, V.A. Chernenko, and O.M. Shevchenko, “Superelasticity in Fe–Ni–Co–TiB alloys,” Fiz. Met. Metalloved., 67, No. 5, 202–204 (1989).

    Google Scholar 

  12. L.P. Gun’ko and A.N. Titenko, “Mechanical properties of Fe–Ni–Co–Ti alloys with thermoelastic martensitic transformation,” Met. Phys. Adv. Techol., 18, 859–865 (2000).

    Google Scholar 

  13. L.P. Gun’ko, G.A. Takzei, and A.N. Titenko, “Superelasticity of the Fe–Ni–Co–Ti alloys with thermoelastic martensite,” Phys. Met. Metall., 91, No. 6, 624–628 (2001).

    Google Scholar 

  14. T. Maki, K. Kobayashi, M. Minato, and I. Tamura, “Thermoelastic martensite in an ausaged Fe–Ni–Ti–Co alloy,” Scr. Metall., 18, 1105–1109 (1984).

    Article  CAS  Google Scholar 

  15. Yu.I. Chumlyakov, I.V. Kireeva, I. Karaman, E.Yu. Penchenko, E.G. Zakharova, A.V. Tverskov, A.V. Ovsyannikov, K. M. Nazarov, and V. A. Kirillov, “Orientation dependence of shape memory effects and superelasticity in single crystals,” Izv. VUZ. Fiz., 47, No. 9, 4–20 (2004).

    Google Scholar 

  16. L.P. Gun’ko, G.A. Takzei, and A.N. Titenko, “Thermoelastic martensitic transformation in ferromagnetic materials and their superelastic properties,” Funct. Mater., 9, No. 1, 75–78 (2002).

    Google Scholar 

  17. R. Hayashi, S.J. Murray, M. Marioni, S.M. Allen, and R.C. O’Handley, “Magnetic and mechanical properties of FeNiCoTi magnetic shape memory alloy,” Sens. Actuators, 81, No. 1–3, 219–223 (2000).

    Article  CAS  Google Scholar 

  18. T. Omori, M. Okano, and R. Kainuma, “Effect of grain size on superelasticity in Fe–Mn–Al–Ni shape memory alloy wire,” APL Mater., 1, No. 3, 0321031 1-8 (2013).

  19. M. Vollmer, P. Krooß, M.J. Kriegel, V. Klemm, C. Somsen, H. Ozcan, I. Karaman, A. Weidner, D. Rafaja, H. Biermann, and T. Niendorf, “Cyclic degradation in bamboo-like Fe–Mn–Al–Ni shape memory alloys— The role of grain orientation,” Scr. Mater., 114, 156–160 (2016).

    Article  CAS  Google Scholar 

  20. A.N. Titenko, L.E. Kozlova, and V.A. Chernenko, “Effect of preliminary plastic strain and annealing time on the mechanical properties of the shape memory Fe–Ni–Co–Ti alloy,” Metallofiz. Noveish. Tekhnol., 23, No. 11, 1513–1524 (2001).

    CAS  Google Scholar 

  21. A. Titenko, L. Demchenko, L. Kozlova, and M. Babanli, “Effect of thermomechanical treatment on mechanical properties of ferromagnetic Fe−Ni−Co−Ti alloy,” in: A. Stebner and G. Olson (eds.), Proc. Int. Conf. Martensitic Transformations. The Minerals, Metals & Materials Series, Springer, Chicago (2018), pp. 115−120.

    Google Scholar 

  22. A.N. Titenko and L.D. Demchenko, “Properties of the shape memory iron-base alloy after thermal mechanical treatment,” Metalloznav. Obrob. Met., 68, No. 4, 17–22 (2013).

    Google Scholar 

  23. V.V. Kokorin, V.A. Chernenko, and O.M. Babiy, “Investigation of reversion stresses generated in Fe–Ni–Co–Ti alloy,” Met. Phys. Adv. Technol., 18, No. 2, 211−218 (1999).

    Google Scholar 

  24. L.P. Gunko and G.A. Takzey, “Composition dependence of martensitic transformation hysteresis and superelastic strain of the Fe–Ni–Co–Ti–(Cu) alloys,” Fiz. Met. Metalloved., 98, No. 6, 33–37 (2004).

    CAS  Google Scholar 

  25. L.E. Kozlova and A.N. Titenko, “Stress-induced martensitic transformation in polycrystalline aged Cu–Al–Mn alloys,” Mater. Sci. Eng. A, 438−440, 738–742 (2006).

    Article  Google Scholar 

  26. J. Hausch and H. Warlimont, “Single crystalline elastic constants of ferromagnetic face centered cubic Fe-Ni invar alloys,” Acta Met., 21, No. 4, 401–414 (1973).

    Article  CAS  Google Scholar 

  27. M. Foos, C. Frantz, and M. Gantois, “Possible model for the nucleation of bcc or bct martensite in fcc alloys in application of Fe3Pt alloys,” Acta Met., 29, No. 6, 1091–1098 (1981).

    Article  CAS  Google Scholar 

  28. S. Kuramoto, T. Furuta, N. Nagasakko, and Z. Horita, “Lattice softening for producing ultrahigh strength of iron base nanocrystalline alloy,” Appl. Phys. Lett., 95, S147–S150 (2009).

    Article  Google Scholar 

  29. V.L. Sedov, Antiferromagnetism of Gamma Iron. Invar Issue [in Russian], Nauka, Moscow (1987), p. 288.

  30. T. Omori, M. Nagasako, M. Okano, K. Endo, and R. Kainuma, “Microstructure and martensitic transformation in the Fe–Mn–Al–Ni shape memory alloy with B2-type coherent fine particles,” Appl. Phys. Lett., 101, 231907 (2012).

    Article  Google Scholar 

  31. G.A. Malygin, “Kinetic model of superelastic strain and shape memory effects in martensitic transformations,” Fiz. Tverd. Tela, 35, No. 1, 127–137 (1993).

    CAS  Google Scholar 

  32. Yu.N. Koval and V.A. Lobodyuk, “Strain phenomena in martensitic transformations,” Usp. Fiz. Met., 7, No. 2, 53–116 (2006).

    Article  CAS  Google Scholar 

  33. E. Patoor, A. Eberhardt, and M. Berveiller, “Micromechanical modeling of superelasticity in SMA,” J. Phys. IV, 6, C1-277–C1-292 (1996).

    Google Scholar 

  34. E. Patoor, N. Siredey, A. Eberhardt, and M. Berveiller, “Micromechanical approach of the fatigue behavior in a superelastic single crystal,” J. Phys. IV, 5, C8-227–C8-232 (1995).

    Google Scholar 

  35. H. Sehitoglu, C. Efstathiou, H.J. Maier, and Y. Chumlyakov, “Deformation of FeNiCoTi shape memory single crystals,” Mech. Mater., 38, 779–784 (2006).

    Article  Google Scholar 

  36. Y.N. Liang, S.Z. Li, and Y.B. Jin, “Wear behavior of a TiNi alloy,” Wear, 198, 236–241 (1996).

    Article  CAS  Google Scholar 

  37. D.Y. Li, “Wear behavior of TiNi shape memory alloys,” Scr. Mater., 43, No. 2, 195–200 (1996).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A.N. Titenko.

Additional information

Translated from Poroshkova Metallurgiya, Vol. 59, Nos. 5–6 (533), pp. 42–56, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Titenko, A., Demchenko, L., Babanli, M. et al. The Influence of Thermomechanical Treatment on the Strain Behavior of the Fe–Ni–Co–Ti Ferromagnetic Alloy Nanocomposite with Shape Memory Effect. Powder Metall Met Ceram 59, 271–281 (2020). https://doi.org/10.1007/s11106-020-00159-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11106-020-00159-0

Keywords

Navigation