Skip to main content
Log in

The relationship between root exudation properties and root morphological traits of cucumber grown under different nitrogen supplies and atmospheric CO2 concentrations

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

Nitrogen supply and atmospheric CO2 concentration ([CO2]) could influence root exudates directly by altering compound concentrations in roots and indirectly by regulating root morphology. This study assessed these direct and indirect effects on cucumber root exudation.

Methods

Cucumber roots with various morphological traits were obtained in different combinations of nitrogen supplies and [CO2] treatments. Then, the correlations between ten compounds in root exudates and their concentrations in root extracts as well as root morphological traits were evaluated.

Results

In case of root exudates, the amounts of sugars were more closely correlated to the root surface area, whereas organic acids and amino acids were more closely associated with the number of root tips. Moreover, fructose, glucose, sucrose and oxalic acid in root exudates were correlated to their concentrations in root extracts, whereas there was little correlation between root exudates and extracts for malic acid, citric acid or four amino acids.

Conclusions

Sugars were probably released from the whole roots by passive or facilitated diffusion, so both the direct and indirect effects were important. Organic acids and amino acids were mainly secreted from the root apices by active transport, thus the indirect effect was more important.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Amman C, Amberger A (1989) Phosphorus efficiency of buckwheat (Fagopyron esculentum). J Plant Nutr Soil Sci 152:181–189

    Google Scholar 

  • Aranjuelo I, Cabrerizo PM, Arrese-Igor C, Aparicio-Tejo PM (2013) Pea plant responsiveness under elevated [CO2] is conditioned by the N source (N2 fixation versus NO3 fertilization). Environ Exp Bot 95:34–40

    Article  CAS  Google Scholar 

  • Azam A, Khan I, Mahmood A, Hameed A (2013) Yield, chemical composition and nutritional quality responses of carrot, radish and turnip to elevated atmospheric carbon dioxide. J Sci Food Agric 93:3237–3244

    Article  CAS  PubMed  Google Scholar 

  • Badri DV, Vivanco JM (2009) Regulation and function of root exudates. Plant Cell Environ 32:666–681

    Article  CAS  PubMed  Google Scholar 

  • Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266

    Article  CAS  PubMed  Google Scholar 

  • Bertin C, Yang X, Weston LA (2003) The role of root exudates and allelochemicals in the rhizosphere. Plant Soil 256:67–83

    Article  CAS  Google Scholar 

  • Büttner M (2010) The Arabidopsis sugar transporter (AtSTP) family: an update. Plant Biol 12:35–41

    Article  PubMed  Google Scholar 

  • Buysse J, Merckx R (1993) An improved colorimetric method to quantify sugar content of plant tissue. J Exp Bot 44:1627–1629

    Article  CAS  Google Scholar 

  • Carvalhais LC, Dennis PG, Fedoseyenko D, Hajirezaei MR, Borriss R, von Wirén N (2011) Root exudation of sugars, amino acids, and organic acids by maize as affected by nitrogen, phosphorus, potassium, and iron deficiency. J Plant Nutr Soil Sci 174:3–11

    Article  CAS  Google Scholar 

  • Cawthray GR (2003) An improved reversed-phase liquid chromatographic method for the analysis of low-molecular mass organic acids in plant root exudates. J Chromatogr A 1011:233–240

    Article  CAS  PubMed  Google Scholar 

  • Chen ZC, Liao H (2016) Organic acid anions: an effective defensive weapon for plants against aluminum toxicity and phosphorus deficiency in acidic soils. J Genet Genom 43:631–638

    Article  Google Scholar 

  • Chen LQ, Hou BH, Lalonde S, Takanaga H, Hartung ML, XQ Q, Guo WJ, Kim JG, Underwood W, Chaudhuri B, Chermak D, Antony G, White FF, Somerville SC, Mudgett MB, Frommer WB (2010) Sugar transporters for intercellular exchange and nutrition of pathogens. Nature 468:527–532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen LQ, XQ Q, Hou BH, Sosso D, Osorio S, Fernie AR, Frommer WB (2012) Sucrose efflux mediated by SWEET proteins as a key step for phloem transport. Science 335:207–211

    Article  CAS  PubMed  Google Scholar 

  • Chen HY, Huh JH, YC Y, Ho LH, Chen LQ, Tholl D, Frommer WB, Guo WJ (2015) The Arabidopsis vacuolar sugar transporter SWEET2 limits carbon sequestration from roots and restricts Pythium infection. Plant J 83:1046–1058

    Article  CAS  PubMed  Google Scholar 

  • Cheng JT, Li X, Yao FZ, Shan N, Li YH, Zhang ZX, Sui XL (2015) Functional characterization and expression analysis of cucumber (Cucumis sativus L.) hexose transporters, involving carbohydrate partitioning and phloem unloading in sink tissues. Plant Sci 237:46–56

    Article  CAS  PubMed  Google Scholar 

  • Darrah PR (1996) Rhizodeposition under ambient and elevated CO2 levels. Plant Soil 187:265–275

    Article  CAS  Google Scholar 

  • Demmers-Derks H, Mitchell RAC, Mitchell VJ, Lawlor DW (1998) Response of sugar beet (Beta vulgaris L.) yield and biochemical composition to elevated CO2 and temperature at two nitrogen applications. Plant Cell Environ 21:829–836

    Article  CAS  Google Scholar 

  • Dong JL, Li X, Duan ZQ (2016) Biomass allocation and organs growth of cucumber (Cucumis sativus L.) under elevated CO2 and different N supply. Arch Agron Soil Sci 62:277–288

    Article  CAS  Google Scholar 

  • Dong JL, Li X, Chu WY, Duan ZQ (2017) High nitrate supply promotes nitrate assimilation and alleviates photosynthetic acclimation of cucumber plants under elevated CO2. Sci Hortic 218:275–283

    Article  CAS  Google Scholar 

  • Fonseca F, Bowsher CG, Stulen I (1997) Impact of elevated atmospheric CO2 on nitrate reductase transcription and activity in leaves and roots of Plantago major. Physiol Plant 100:940–948

    Article  CAS  Google Scholar 

  • Forde BG (2014) Nitrogen signalling pathways shaping root system architecture: an update. Curr Opin Plant Biol 21:30–36

    Article  CAS  PubMed  Google Scholar 

  • Forde B, Lorenzo H (2001) The nutritional control of root development. Plant Soil 232:51–68

    Article  CAS  Google Scholar 

  • Frenzel B (1960) Zur ätiologie der anreicherung von aminosäuren und amiden im wurzelraum von Helianthes annus L. Ein beitrag zur klärung der probleme der rhizosphäre. Planta 55:169–207

    Article  CAS  Google Scholar 

  • Furukawa J, Yamaji N, Wang H, Mitani N, Murata Y, Sato K, Katsuhara M, Takeda K, Ma JF (2007) An aluminum-activated citrate transporter in barley. Plant Cell Physiol 48:1081–1091

    Article  CAS  PubMed  Google Scholar 

  • Geiger M, Walch-Liu P, Engels C, Harnecker J, Schulze ED, Ludewig F, Sonnewald U, Scheible WR, Stitt M (1998) Enhanced carbon dioxide leads to a modified diurnal rhythm of nitrate reductase activity in older plants, and a large stimulation of nitrate reductase activity and higher levels of amino acids in young tobacco plants. Plant Cell Environ 21:253–268

    Article  CAS  Google Scholar 

  • Gransee A, Wittenmayer L (2000) Qualitative and quantitative analysis of water-soluble root exudates in relation to plant species and development. J Plant Nutr Soil Sci 163:381–385

    Article  CAS  Google Scholar 

  • Groleau-Renaud V, Plantureux S, Guckert A (1998) Influence of plant morphology on root exudation of maize subjected to mechanical impedance in hydroponic conditions. Plant Soil 201:231–239

    Article  CAS  Google Scholar 

  • Gruber BD, Giehl RFH, Friedel S, von Wirén N (2013) Plasticity of the Arabidopsis root system under nutrient deficiencies. Plant Physiol 163:161–179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo WJ, Nagy R, Chen HY, Pfrunder S, Yu YC, Santelia D, Frommer WB, Martinoia E (2014) SWEET17, a facilitative transporter, mediates fructose transport across the tonoplast of Arabidopsis roots and leaves. Plant Physiol 164:777–789

    Article  CAS  PubMed  Google Scholar 

  • Haase S, Neumann G, Kania A, Kuzyakov Y, Römheld V, Kandeler E (2007) Elevation of atmospheric CO2 and N-nutritional status modify nodulation, nodule-carbon supply, and root exudation of Phaseolus vulgaris L. Soil Biol Biochem 39:2208–2221

    Article  CAS  Google Scholar 

  • Haichar FZ, Santaella C, Heulin T, Achouak W (2014) Root exudates mediated interactions belowground. Soil Biol Biochem 77:69–80

    Article  CAS  Google Scholar 

  • Hodge A, Paterson E, Grayston SJ, Campbell CD, Ord BG, Killham K (1998) Characterisation and microbial utilisation of exudate material from the rhizosphere of Lolium perenne grown under CO2 enrichment. Soil Biol Biochem 30:1033–1043

    Article  CAS  Google Scholar 

  • Hoekenga OA, Maron LG, Piñeros MA, Cançado GM, Shaff J, Kobayashi Y, Ryan PR, Dong B, Delhaize E, Sasaki T, Matsumoto H, Yamamoto Y, Koyama H, Kochian LV (2006) AtALMT1, which encodes a malate transporter, is identified as one of several genes critical for aluminum tolerance in Arabidopsis. PNAS 103:9738–9743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang XF, Chaparro JM, Reardon KF, Zhang R, Shen Q, Vivanco JM (2014) Rhizosphere interactions: root exudates, microbes, and microbial communities. Botany 92:267–275

    Article  Google Scholar 

  • Jauregui I, Aparicio-Tejo PM, Avila C, Rueda-Lópezc M, Aranjuelo I (2015) Root and shoot performance of Arabidopsis thaliana exposed to elevated CO2: a physiologic, metabolic and transcriptomic response. J Plant Physiol 189:65–76

    Article  CAS  PubMed  Google Scholar 

  • Jones DL, Darrah PR (1993) Influx and efflux of amino acids from Zea mays L. roots and their implications for N nutrition and the rhizosphere. Plant Soil 155/156:87–93

    Article  Google Scholar 

  • Jones DL, Darrah PR (1994) Amino-acid influx at the soil-root interface of Zea mays L. and its implications in the rhizosphere. Plant Soil 163:1–12

    Article  CAS  Google Scholar 

  • Jones DL, Darrah PR (1995) Influx and efflux of organic acids across the soil-root interface of Zea mays L. and its implications in rhizosphere C flow. Plant Soil 173:103–109

    Article  CAS  Google Scholar 

  • Jones DL, Darrah PR (1996) Re-sorption of organic compounds by roots of Zea mays L. and its consequences in the rhizosphere III. Characteristics of sugar influx and efflux. Plant Soil 178:153–160

    Article  CAS  Google Scholar 

  • Jones DL, Nguyen C, Finlay RD (2009) Carbon flow in the rhizosphere: carbon trading at the soil–root interface. Plant Soil 321:5–33

    Article  CAS  Google Scholar 

  • Keerthisinghe G, Hocking PJ, Ryan PR, Delhaize E (1998) Effect of phosphorus supply on the formation and function of proteoid roots of white lupin (Lupinus albus L.) Plant Cell Environ 21:467–478

    Article  CAS  Google Scholar 

  • Kellermeier F, Armengaud P, Seditas TJ, Danku J, Salt DE, Amtmanna A (2014) Analysis of the root system architecture of Arabidopsis provides a quantitative readout of crosstalk between nutritional signals. Plant Cell 26:1480–1496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kiba T, Krapp A (2016) Plant nitrogen acquisition under low availability: Regulation of uptake and root architecture. Plant Cell Physiol 57:707–714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kläring HP, Hauschild C, Heiβner A, Bar-Yosef B (2007) Model-based control of CO2 concentration in greenhouses at ambient levels increases cucumber yield. Agric Forest Meteorol 143:208–216

    Article  Google Scholar 

  • Kollmeier M, Dietrich P, Bauer CS, Horst WJ, Hedrich R (2001) Aluminum activates a citrate-permeable anion channel in the aluminum-sensitive zone of the maize root apex. A comparison between an aluminum-sensitive and an aluminum-resistant cultivar. Plant Physiol 126:397–410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kruse J, Hetzger I, Hänsch R, Mendel RR, Rennenberg H (2003) Elevated pCO2 affects C and N metabolism in wild type and transgenic tobacco exhibiting altered C/N balance in metabolite analysis. Plant Biol 5:540–549

    Article  CAS  Google Scholar 

  • Kryvoruchko IS, Sinharoy S, Torres-Jerez I, Sosso D, Pislariu CI, Guan D, Murray J, Benedito VA, Frommer WB, Udvardi MK (2016) MtSWEET11, a nodule-specific sucrose transporter of Medicago truncatula. Plant Physiol 171:554–565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuzyakov Y (2002) Review: Factors affecting rhizosphere priming effects. J Plant Nutr Soil Sci 165:382–396

    Article  CAS  Google Scholar 

  • Lesuffleur F, Cliquet JB (2010) Characterisation of root amino acid exudation in white clover (Trifolium repens L.) Plant Soil 333:191–201

    Article  CAS  Google Scholar 

  • Li X, Chu W, Dong J, Duan Z (2014) An improved high-performance liquid chromatographic method for the determination of soluble sugars in root exudates of greenhouse cucumber grown under CO2 enrichment. J Am Soc Hortic Sci 139:356–363

    CAS  Google Scholar 

  • Li X, Dong J, Chu W, Duan Z (2015) Adsorption efficiency of a continuous trapping system and its use for the collection of root exudates from cucumber. J Plant Nutr Soil Sci 178:963–975

    Article  CAS  Google Scholar 

  • Li X, Zeng R, Liao H (2016) Improving crop nutrient efficiency through root architecture modifications. J Integr Plant Biol 58:193–202

    Article  PubMed  Google Scholar 

  • López-Bucio J, Cruz-Ramírez A, Herrera-Estrella L (2003) The role of nutrient availability in regulating root architecture. Curr Opin Plant Biol 6:280–287

    Article  PubMed  Google Scholar 

  • Lugtenberg BJJ, Kravchenko LV, Simons M (1999) Tomato seed and root exudate sugars: Composition, utilization by Pseudomonas biocontrol strains and role in rhizosphere colonization. Environ Microbiol 1:439–446

    Article  CAS  PubMed  Google Scholar 

  • Lynch J (1995) Root architecture and plant productivity. Plant Physiol 109:7–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma D, Lv S, Huo Z, Li S, Pang J (1999) A new cucumber variety “Jinlv No. 3”. Acta Hort Sinica 26:279

    Google Scholar 

  • Magalhaes JV, Liu JP, Guimarães CT, Lana UG, Alves VM, Wang YH, Schaffert RE, Hoekenga OA, Piñeros MA, Shaff JE, Klein PE, Carneiro NP, Coelho CM, Trick HN, Kochian LV (2007) A gene in the multidrug and toxic compound extrusion (MATE) family confers aluminum tolerance in sorghum. Nat Genet 39:1156–1161

    Article  CAS  PubMed  Google Scholar 

  • Mahmood T, Woitke M, Gimmler H, Kaiser WM (2002) Sugar exudation by roots of kallar grass [Leptochloa fusca (L.) Kunth] is strongly affected by the nitrogen source. Planta 214:887–984

  • Mariano ED, Keltjens WG (2003) Evaluating the role of root citrate exudation as a mechanism of aluminium resistance in maize genotypes. Plant Soil 256:469–479

    Article  CAS  Google Scholar 

  • Martinez V, Nuñez JM, Ortiz A, Cerda A (1994) Changes in amino acid and organic acid composition in tomato and cucumber plants in relation to salinity and nitrogen nutrition. J Plant Nutr 17:1359–1368

    Article  CAS  Google Scholar 

  • McDougall BM, Rovira AD (1970) Sites of exudation of 14C-labelled compounds from wheat roots. New Phytol 69:999–1003

    Article  Google Scholar 

  • Meyer S, De Angeli A, Fernie AR, Martinoia E (2010) Intra- and extra-cellular excretion of carboxylates. Trends Plant Sci 15:40–47

    Article  CAS  PubMed  Google Scholar 

  • Nie M, Lu M, Bell J, Raut S, Rebdall E (2013) Altered root traits due to elevated CO2: a meta-analysis. Glob Ecol Biogeogr 22:1095–1105

    Article  Google Scholar 

  • Norby RJ (1994) Issues and perspectives for investigating root responses to elevated atmospheric carbon dioxide. Plant Soil 165:9–20

    Article  CAS  Google Scholar 

  • Paterson E, Sim A, Standing D, Dorward M, McDonald AJS (2006) Root exudation from Hordeum vulgare in response to localized nitrate supply. J Exp Bot 57:2413–2420

    Article  CAS  PubMed  Google Scholar 

  • Pearson R, Parkinson D (1961) The sites of excretion of ninhydrin-positive substances by broad bean seedlings. Plant Soil 13:391–396

    Article  CAS  Google Scholar 

  • Peet MM (1986) Acclimation to high CO2 in monoecious cucumbers I. Vegetative and reproductive growth. Plant Physiol 80:59–62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poorter H, Nagel O (2000) The role of biomass allocation in the growth response of plants to different levels of light, CO2, nutrients and water: a quantitative review. Austrian J Plant Physiol 27:595–607

    CAS  Google Scholar 

  • Porter AS, Gerald CEF, McElwain JC, Yiotis C, Elliott-Kingston C (2015) How well do you know your growth chambers? Testing for chamber effect using plant traits. Plant Methods 11:1–10

    Article  Google Scholar 

  • Roger HH, Runion GB, Krupa SV (1994) Plant responses to atmospheric CO2 enrichment with emphasis on roots and the rhizosphere. Environ Pollut 83:155–189

    Article  Google Scholar 

  • Romanova AK, Mudrik VA, Novichkova NS, Demidova RN, Polyakova VA (2002) Physiological and biochemical characteristics of sugar beet plants grown at an increased carbon dioxide concentration and at various nitrate doses. Russ J Plant Physiol 49:204–210

    Article  CAS  Google Scholar 

  • Ryan PR, Delhaize E, Randall PJ (1995) Characterization of Al-stimulated efflux of malate from the apices of Al-tolerant wheat roots. Planta 196:103–110

    Article  CAS  Google Scholar 

  • Saarinen T (1998) Internal C:N balance and biomass partitioning of Carex rostrata grown at three levels of nitrogen supply. Can J Bot 76:762–768

    Google Scholar 

  • Sánchez-Guerrero MC, Lorenzo P, Medrano E, Baille A, Castilla N (2009) Effects of EC-based irrigation scheduling and CO2 enrichment on water use efficiency of a greenhouse cucumber crop. Agric Water Manag 96:429–436

    Article  Google Scholar 

  • Sasaki T, Yamamoto Y, Ezaki B, Katsuhara M, Ahn SJ, Ryan PR, Delhaize E, Matsumoto H (2004) A wheat gene encoding an aluminum-activated malate transporter. Plant J 37:645–653

    Article  CAS  PubMed  Google Scholar 

  • Satbhai SB, Ristova D, Busch W (2015) Underground tuning: quantitative regulation of root growth. J Exp Bot 66:1099–1112

    Article  CAS  PubMed  Google Scholar 

  • Scheible W-R, Gonzalez-Fontez A, Lauerer M, Müller-Röber B, Caboche M, Stitt M (1997) Nitrate acts as a signal to induce organic acid metabolism and repress starch metabolism in tobacco. Plant Cell 9:809–824

    Article  Google Scholar 

  • Šmilauer P, Lepš J (2014) Multivariate analysis of ecological data using CANOCO 5. Cambridge University Press, New York

    Book  Google Scholar 

  • Stitt M (1999) Nitrate regulation of metabolism and growth. Curr Opin Plant Biol 2:178–186

    Article  CAS  PubMed  Google Scholar 

  • Stitt M, Krapp A (1999) The interaction between elevated carbon dioxide and nitrogen nutrition: the physiological and molecular background. Plant Cell Environ 22:583–621

    Article  CAS  Google Scholar 

  • Stulen I, den Hertog J (1993) Root growth and functioning under atmospheric CO2 enrichment. Vegetatio 104(105):99–115

    Article  Google Scholar 

  • Sugiyama A, Saida Y, Yoshimizu M, Takanashi K, Sosso D, Frommer WB, Yazaki K (2017) Molecular characterization of LjSWEET3, a sugar transporter in nodules of Lotus japonicas. Plant Cell Physiol 58:298–306

    PubMed  Google Scholar 

  • Sung J, Lee S, Lee Y, Ha S, Song B, Kim T, Waters BM, Krishnan HB (2015) Metabolomic profiling from leaves and roots of tomato (Solanum lycopersicum L.) plants grown under nitrogen, phosphorus or potassium-deficient condition. Plant Sci 241:55–64

    Article  CAS  PubMed  Google Scholar 

  • Taylor G, Ranasinghe S, Bosač C, Gardner SDL, Ferris R (1994) Elevated CO2 and plant growth: cellular mechanisms and responses of whole plants. J Exp Bot 45:1761–1774

    Article  CAS  Google Scholar 

  • Tegeder M (2014) Transporters involved in source to sink partitioning of amino acids and ureides: opportunities for crop improvement. J Exp Bot 65:1865–1878

    Article  CAS  PubMed  Google Scholar 

  • Ter Braak CJF, Šmilauer P (2012) Canoco reference manual and user's guide: software for ordination, version 5.0. Microcomputer Power, Ithaca

    Google Scholar 

  • Tsiboli P, Konstantinidis G, Skendros Y, Katsani A, Choli-Papadopoulou T (1997) Identification of post-translational modified amino acids. Amino Acids 13:13–23

    Article  CAS  Google Scholar 

  • Van Egeraat AWSM (1975) Exudation of ninhydrin-positive compounds by pea-seedling roots: A study of the sites of exudation and of the composition of the exudate. Plant Soil 42:37–47

    Article  Google Scholar 

  • Vicente R, Pérez P, Martínez-Carrasco R, Gutiérrez E, Morcuende R (2015) Nitrate supply and plant development influence nitrogen uptake and allocation under elevated CO2 in durum wheat grown hydroponically. Acta Physiol Plant 37:114

    Article  Google Scholar 

  • Vicente R, Pérez P, Martínez-Carrasco R, Feil R, Lunn JE, Watanabe M, Arrivault S, Stitt M, Hoefgen R, Morcuende R (2016) Metabolic and transcriptional analysis of durum wheat responses to elevated CO2 at low and high nitrate supply. Plant Cell Physiol 57:2133–2146

    Article  CAS  PubMed  Google Scholar 

  • Walch-Liu P, Neumann G, Engels C (2001) Elevated atmospheric CO2 concentration favors nitrogen partitioning into roots of tobacco plants under nitrogen deficiency by decreasing nitrogen demand of the shoot. J Plant Nutr 24:835–854

    Article  CAS  Google Scholar 

  • Walker TS, Bais HP, Grotewold E, Vivanco JM (2003) Root exudation and rhizosphere biology. Plant Physiol 132:44–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • White AC, Rogers A, Rees M, Osborne CP (2016) How can we make plants grow faster? A source–sink perspective on growth rate. J Exp Bot 67:31–45

    Article  CAS  PubMed  Google Scholar 

  • Xu JG, Juma NG (1994) Relations of shoot C, root C and root length with root-released C of two barley cultivars and the decomposition of root-released C in soil. Can J Soil Sci 74:17–22

    Article  Google Scholar 

  • Yamazaki K (1982) Nutrient solution culture. Pak-kyo Co, Tokyo

    Google Scholar 

  • Zhang BG, Chen QX, Yang Q, Liu KD (2012) Effects of NPK deficiencies on root architecture and growth of cucumber. Int J Agric Biol 14:145–148

    Google Scholar 

  • Zheng SJ, Ma JF, Matsumoto H (1998) High aluminium resistance in buckwheat. I. Aluminium-induced specific secretion of oxalic acid from root tips. Plant Physiol 117:745–751

    Article  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank Mohammad Rezaul Karim and anonymous referees for their kindly help in improving the manuscript. The authors thank Dr. Guangjie Li for his help in scanning the root morphology. We also thank the Strategic Priority Research Program of the Chinese Academy of Science (XDB15030300), the National Science and Technology Support Program of China (2014BAD14B04), and the Frontier Project of Knowledge Innovation Program of Institute of Soil Science, Chinese Academy of Sciences (ISSASIP1635) for funding support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zengqiang Duan.

Additional information

Responsible Editor: Philip John White.

Electronic supplementary material

ESM 1

(DOCX 37 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Dong, J., Chu, W. et al. The relationship between root exudation properties and root morphological traits of cucumber grown under different nitrogen supplies and atmospheric CO2 concentrations. Plant Soil 425, 415–432 (2018). https://doi.org/10.1007/s11104-017-3555-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-017-3555-8

Keywords

Navigation