Skip to main content
Log in

The amounts and dynamics of nitrogen transfer to grasses differ in alfalfa and white clover-based grass-legume mixtures as a result of rooting strategies and rhizodeposit quality

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

Differences in the ability to fix and transfer N have been shown between perennial legume species. However, the traits responsible for such variations are largely to be identified. This study aimed at comparing the dynamics of N transfer from alfalfa and white clover and test whether their differences resulted from difference in fixation, legume proportion, population dynamics or tissue composition.

Methods

A three-year field experiment and a greenhouse experiment were carried out. Nitrogen fixation and transfer were assessed trough 15 N dilution and difference methods.

Results

Both experiments confirmed significant differences between legumes regarding N transfer capacity. Although alfalfa cumulated twice as much biomass and fixed nitrogen, it transferred smaller amounts of N (59 versus 147 kg N.ha−1 over three years in the field) under a delayed dynamic. The amounts of nitrogen transferred were related to recent decreases in legume population density. Moreover, root tissue composition differed; white clover had a higher proportion of fine roots with a lower C/N and lignin content. This resulted in more rapid N release from the severed roots of clover.

Conclusions

The traits controlling plant persistency, root material turnover and residue quality may better explain N transfer dynamics than overall legume production and fixation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Altieri MA (1999) Applying agro-ecology to enhance productivity of peasant farming systems in Latin America. Environ Dev Sustain 1:197–217

    Article  Google Scholar 

  • Aulen M, Shipley B, Bradley R (2012) Prediction of in situ root decomposition rates in an interspecific context from chemical and morphological traits. Ann Bot 109(1):287–297

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bedoussac L, Justes E (2010a) The efficiency of a durum wheat-winter pea intercrop to improve yield and wheat grain protein concentration depends on N availability during early growth. Plant Soil 330:19–35

    Article  CAS  Google Scholar 

  • Bedoussac L, Justes E (2010b) Dynamic analysis of competition and complementarity for light and N use to understand the yield and the protein content of a durum wheat-winter pea intercrop. Plant Soil 330:37–54

    Article  CAS  Google Scholar 

  • Bethlenfalvay GJ, Reyes-Solis MG, Camel SB, Ferrera-Cerrato R (1991) Nutrient transfer between the root zones of soybean and maize plants connected by a common mycorrhizal mycelium. Physiol Plant 82(3):423–432

    Article  CAS  Google Scholar 

  • Birouste M, Kazakou E, Blanchard A, Roumet C (2012) Plant traits and decomposition: are the relationships for roots comparable to those for leaves? Ann Bot 109:463–472

    Article  PubMed Central  PubMed  Google Scholar 

  • Brophy LS, Heichel GH (1989) Nitrogen release from roots of alfalfa and soybean grown in sand culture. Plant Soil 116:77–84

    Article  CAS  Google Scholar 

  • Burity HA, Ta TC, Faris MA, Coulman BE (1989) Estimation of nitrogen fixation and transfer from alfalfa to associated grasses in mixed swards under field conditions. Plant Soil 114:249–255

    Article  Google Scholar 

  • Butler GW, Greenwood RM, Soper K (1959) Effects of shading and defoliation on the turnover of root and nodule tissue of plants of Trifolium repens, Trifolium pratense, and Lotus uliginosus. N Z J Agric Res 2(3):415–426

    Article  Google Scholar 

  • Cadisch G, Handayanto E, Malama C, Seyni F, Giller KE (1998) N recovery from legume prunings and priming effects are governed by the residue quality. Plant Soil 205:125–134

    Article  CAS  Google Scholar 

  • Carlsson G, Huss-Danell K (2003) Nitrogen fixation in perennial forage legumes in the field. Plant Soil 253:353–372

    Article  CAS  Google Scholar 

  • Chabbi A, Kögel-Knabner I, Rumpel C (2009) Stabilised carbon in subsoil horizons is located in spatially distinct parts of the soil profile. Soil Biol Biochem 41:256–261

    Article  CAS  Google Scholar 

  • Chalk PM, Peoples MB, McNeill AM, Boddey RM, Unkovich MJ, Gardener MJ, Silva CF, Chen D (2014) Methodologies for estimating nitrogen transfer between legumes and companion species in agro-ecosystems: a review of 15 N-enriched techniques. Soil Biol Biochem 73:10–21

    Article  CAS  Google Scholar 

  • Corre-Hellou G, Fustec J, Crozat Y (2006) Interspecific competition for soil N and its interactions with N2 fixation, leaf expansion and crop growth in pea-barley intercrops. Plant Soil 282:195–208

    Article  CAS  Google Scholar 

  • Dabney SM, Delgado JA, Reeves DW (2001) Using cover crops to improve soil and water quality. Commun Soil Sci Plant Anal 32(7&8):1221–1250

    Article  CAS  Google Scholar 

  • Drinkwater LE, Wagoner P, Sarrantonio M (1998) Legume-based cropping systems have reduced carbon and nitrogen losses. Nature 396:262–265

    Article  CAS  Google Scholar 

  • Dubach M, Russelle MP (1994) Forage legume roots and nodules and their role in nitrogen transfer. Agron J 86:259–266

    Article  Google Scholar 

  • Ehrmann J, Ritz K (2014) Plant: soil interactions in temperate multi-cropping production systems. Plant Soil 376:1–29

    Article  CAS  Google Scholar 

  • Elgersma A, Hassink J (1997) Effects of white clover (Trifolium repens L.) on plant and soil nitrogen and soil organic matter in mixtures with perennial ryegrass (Lolium perenne L.). Plant Soil 197:177–186

    Article  CAS  Google Scholar 

  • Erisman JW, Galloway JN, Seitzinger S, Bleeker A, Dise NB, Petrescu AMR, Leach AM, de Vries W (2013) Consequences of human modification of the global nitrogen cycle. Phil Trans R Soc B 368:20130116

    Article  PubMed Central  PubMed  Google Scholar 

  • Finn JA, Kirwan L, Connolly J, Sebastià MT, Helgadóttir Á et al (2013) Ecosystem function enhanced by combining four functional types of plant species in intensively managed grassland mixtures: a 3-yr continental-scale field experiments. J Appl Ecol 50:365–375

    Article  Google Scholar 

  • Forde MB, Hay MJM, Brock JL (1989) Development and growth characteristics of temperate perennial legumes. In: Marten GC et al (eds) Persistence of forage legumes. American Society of Agronomy, Honolulu, pp 91–110

    Google Scholar 

  • Fort F (2013) Stratégies d'acquisition des ressources des plantes prairiales sous contraintes hydrique et minérale - Rôle du système racinaire dans la réponse aux facteurs structurant les communautés. Université de Toulouse, France

    Google Scholar 

  • Fox RH, Myers RJK, Vallis I (1990) The nitrogen mineralization rate of legume residues in soil as influenced by their polyphenol, lignin, and nitrogen contents. Plant Soil 129(2):251–259

    CAS  Google Scholar 

  • Fustec J, Lesuffleur F, Mahieu S, Cliquet J-B (2010) Nitrogen rhizodeposition of legumes. a review. Agron Sustain Dev 30:57–66

    Article  CAS  Google Scholar 

  • Gaba et al. (2015) Multiple cropping systems as drivers for providing multiple ecosystem services: from concepts to design. Agron Sustain Dev. doi:10.1007/s13593-014-0272-z

  • Galloway JN, Aber JD, Erisman JW, Seitzinger SP, Howarth RW, Cowling EB, Cosby EJ (2003) The nitrogen cascade. Bioscience 53(4):341–356

    Article  Google Scholar 

  • Gastal F, Lemaire G, Durand JL, Louarn G (2014) Quantifying crop responses to nitrogen and avenues to improve nitrogen-use efficiency. In: Sadras VO, Calderini D (eds) Crop physiology – Applications for genetic improvement and agronomy, 2nd edn. Academic, Elsevier, pp 161–206

    Google Scholar 

  • Goodman PJ, Collison M (1986) Effect of three clover varieties on growth, 15 N uptake and fixation by ryegrass/white clover mixtures at three sites in Wales. Grass Forage Sci 41(3):191–198

    Article  Google Scholar 

  • Gruber N, Galloway JN (2008) An Earth-system perspective of the global nitrogen cycle. Nature 451(7176):293–296

    Article  CAS  PubMed  Google Scholar 

  • Hardarson G, Zapata F, Danso SKA (1988) Dinitrogen fixation measurements in alfalfa-ryegrass swards using Nitrogen-15 and influence of the reference crop. Crop Sci 28(1):101–105

    Article  Google Scholar 

  • Heichel GH, Henjum KI (1991) Dinitrogen fixation, nitrogen transfer, and productivity of forage legume-grass communities. Crop Sci 31(1):202–208

    Article  CAS  Google Scholar 

  • Herridge DF, Peoples MB, Boddey RM (2008) Global inputs of biological nitrogen fixation in agricultural systems. Plant Soil 311:1–18

    Article  CAS  Google Scholar 

  • Høgh-Jensen H, Schjoerring JK (2000) Below-ground nitrogen transfer between different grassland species: Direct quantification by 15 N leaf feeding compared with indirect dilution of soil 15 N. Plant Soil 227:171–183

    Article  Google Scholar 

  • Høgh-Jensen H, Loges R, Jørgensen FV, Vinther FP, Jensen ES (2004) An empirical model for quantification of symbiotic nitrogen fixation in grass-clover mixtures. Agric Syst 82:181–194

    Article  Google Scholar 

  • Hopkins A, Wilkins RJ (2006) Temperate grassland: key developments in the last century and future perspectives. J Agric Sci 144(06):503–523

    Article  CAS  Google Scholar 

  • IUSS Working Group WRB (2006) World reference base for soil resources 2006. World Soil Resources Report No. 103. FAO, Rome

    Google Scholar 

  • Jackson LE, Burger M, Cavagnaro TR (2008) Roots, nitrogen transformations, and ecosystem services. Annu Rev Plant Physiol Plant Mol Biol 59(1):341–363

    Article  CAS  Google Scholar 

  • Jamont M, Piva G, Fustec J (2013) Sharing N resources in the early growth of rapeseed intercropped with faba bean: does N transfer matter? Plant Soil 371:641–653

    Article  CAS  Google Scholar 

  • Jenkinson DS, Fox RH, Rayner JH (1985) Interactions between fertilizer nitrogen and soil nitrogen: the so-called ‘priming’ effect. J Soil Sci 36(3):425–444

    Article  CAS  Google Scholar 

  • Jensen LS, Schjoerring JK (2011) Benefits of nitrogen for food, fibre and industrial production. In: Sutton MA et al (eds) The European nitrogen assessment. Sources, effects and policy perspectives. Cambridge University Press, Cambridge, pp 32–61

    Chapter  Google Scholar 

  • Kuzyakov Y, Friedel JK, Stahr K (2000) Review of mechanisms and quantification of priming effects. Soil Biol Biochem 32:1485–1498

    Article  CAS  Google Scholar 

  • Ledgard SF, Steele KW (1992) Biological nitrogen fixation in mixed legume/grass pastures. Plant Soil 141(1):137–153

    Article  CAS  Google Scholar 

  • Lesuffleur F, Salon C, Cliquet JB (2013) Use of a 15 N2 labelling technique to estimate exudation by white clover and transfer to companion ryegrass of symbiotically fixed N. Plant Soil 369(1–2):187–197

    Article  CAS  Google Scholar 

  • Lithourgidis AS, Dordas CA, Damalas CA, Vlachostergios DN (2011) Annual intercrops: an alternative pathway for sustainable agriculture. Aust J Crop Sci 5:396–410

    Google Scholar 

  • Louarn G, Corre-Hellou G, Fustec J, Lô-Pelzer E, Julier B, Litrico I, Hinsinger P, Lecomte C (2010) Déterminants écologiques et physiologiques de la productivité et de la stabilité des associations graminées-légumineuses. Innov Agron 11:79–99

    Google Scholar 

  • Mallarino AP, Wedin WF, Perdomo CH, Goyenola RS, West CP (1990) Nitrogen transfer from white clover, red clover, and birdsfoot trefoil to associated grass. Agron J 82(4):790–795

    Article  CAS  Google Scholar 

  • Marriot C, Haystead A (1993) Nitrogen fixation and transfer. In: Davies A, Baker RD, Grant SA, Laidlaw A (eds) Sward measurement handbook. reading. The British Grassland Society, UK, pp 245–264

    Google Scholar 

  • Nyfeler D, Huguenin-Elie O, Suter M, Frossard E, Lüscher A (2011) Grass-legume mixtures can yield more nitrogen than legume pure stands due to mutual stimulation of nitrogen uptake from symbiotic and non-symbiotic sources. Agric Ecosyst Environ 140(1–2):155–163

    Article  Google Scholar 

  • Paynel F, Cliquet JB (2003) N transfer from white clover to perennial ryegrass, via exudation of nitrogenous compounds. Agronomie 23(5–6):503–510

    Article  CAS  Google Scholar 

  • Peoples MB, Brockwell J et al (2009) The contributions of nitrogen-fixing crop legumes to the productivity of agricultural systems. Symbiosis 48:1–17

    Article  CAS  Google Scholar 

  • Rasmussen J, Søegaard K, Pirhofer-Walzl K, Eriksen J (2012) N2-fixation and residual N effect of four legume species and four companion grass species. Eur J Agron 36(1):66–74

    Article  CAS  Google Scholar 

  • Ryser P (1996) The importance of tissue density for growth and life span of leaves and roots: a comparison of five ecologically contrasting grasses. Funct Ecol 10:717–723

    Article  Google Scholar 

  • Schipanski M, Drinkwater L (2012) Nitrogen fixation in annual and perennial legume-grass mixtures across a fertility gradient. Plant Soil 357:147–159

    Article  CAS  Google Scholar 

  • Simpson J (1965) The transference of nitrogen from pasture legumes to an associated grass under several systems of management in pot culture. Aust J Agric Res 16(6):915–926

    Article  CAS  Google Scholar 

  • Simpson J (1976) Transfer of nitrogen from three pasture legumes under periodic defoliation in a field environment. Aus J Exp Agric Anim Husb 16(83):863–870

    Article  Google Scholar 

  • Snapp SS, Swinton SM, Labarta R, Mutch D, Black JR, Leep R, Nyiraneza J, O’Neil K (2005) Evaluating cover crops for BENEFITS, costs and performance within cropping system niches. Agron J 97(1):322–332

    Google Scholar 

  • Ta TC, MacDowall FDH, Faris MA (1986) Excretion of nitrogen assimilated from N2 fixed by nodulated roots of alfalfa (Medicago sativa). Can J Bot 64:2063–2067

    Article  CAS  Google Scholar 

  • Ta TC, Faris MA (1987a) Effects of alfalfa proportions and clipping frequencies on timothy-alfalfa mixtures. II. Nitrogen fixation and transfer. Agron J 79:820–824

    Article  Google Scholar 

  • Ta TC, Faris MA (1987b) Species variation in the fixation and transfer of nitrogen from legumes to associated grasses. Plant Soil 98:265–274

    Article  CAS  Google Scholar 

  • Tomm G (1993) Nitrogen transfer in an Alfalfa-Bromegrass mixture. University of Saskatchewan, Saskatoon

    Google Scholar 

  • Unkovitch M, Herridge D, Peoples M, Cadisch G, Boddey B, Giller K, Alves B, Chalk PM (2008) Measuring plant-associated nitrogen fixation in agricultural systems. ACIAR, Canberra

    Google Scholar 

  • Van Soest PJ (1963) Use of detergents in the analysis of fibrous feeds. A rapid method for the determination of fiber and lignin. J Assoc Off Anal Chem 46:829–835

    Google Scholar 

  • Walker TW, Orchiston HD, Adams AFR (1954) The nitrogen economy of grass legume associations. Grass Forage Sci 9(4):249–274

    Article  CAS  Google Scholar 

  • Wardle DA, Greenfield LG (1991) Release of mineral nitrogen from plant root nodules. Soil Biol Biochem 23(9):827–832

    Article  Google Scholar 

  • Wedin D, Tilman D (1990) Species effects on nitrogen cycling: a test with perennial grasses. Oecologia 84:433–441

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the E & A department of INRA (TransfertN project) and the CAPES/Cofecub exchange programme from Brazil (project 684/10). We would like to thank S. Carre, A. Eprinchard, L. Faverjon, N. Moynet, A. Philiponneau, E. Rivault and J.P. Terrasson for their assistance with the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaëtan Louarn.

Additional information

Responsible Editor: Euan K. James.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 173 kb)

ESM 2

(DOC 67 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Louarn, G., Pereira-Lopès, E., Fustec, J. et al. The amounts and dynamics of nitrogen transfer to grasses differ in alfalfa and white clover-based grass-legume mixtures as a result of rooting strategies and rhizodeposit quality. Plant Soil 389, 289–305 (2015). https://doi.org/10.1007/s11104-014-2354-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-014-2354-8

Keywords

Navigation