Skip to main content

Advertisement

Log in

Litter quality and its response to water level drawdown in boreal peatlands at plant species and community level

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Changes in the structure of plant communities may have much more impact on ecosystem carbon (C) cycling than any phenotypic responses to environmental changes. We studied these impacts via the response of plant litter quality, at the level of species and community, to persistent water-level (WL) drawdown in peatlands. We studied three sites with different nutrient regimes, and water-level manipulations at two time scales. The parameters used to characterize litter quality included extractable substances, cellulose, holocellulose, composition of hemicellulose (neutral sugars, uronic acids), Klason lignin, CuO oxidation phenolic products, and concentrations of C and several nutrients. The litters formed four chemically distinct groups: non-graminoid foliar litters, graminoids, mosses and woody litters. Direct effects of WL drawdown on litter quality at the species level were overruled by indirect effects via changes in litter type composition. The pristine conditions were characterized by Sphagnum moss and graminoid litters. Short-term (years) responses of the litter inputs to WL drawdown were small. In long-term (decades), total litter inputs increased, due to increased tree litter inputs. Simultaneously, the litter type composition and its chemical quality at the community level greatly changed. The changes that we documented will strongly affect soil properties and C cycle of peatlands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aerts R, De Caluwe H (1997) Nutritional and plant-mediated controls on leaf litter decomposition of Carex species. Ecology 78:244–260

    Google Scholar 

  • Aerts R, Callaghan TV, Dorrepaal E, van Logtestijn RSP, Cornelissen JHC (2009) Seasonal climate manipulations result in species-specific changes in leaf nutrient levels and isotopic composition in a sub-arctic bog. Functional Ecology 23:680–688

    Article  Google Scholar 

  • Aurela M, Laurila T, Tuovinen J-P (2004) The timing of snow melt controls the annual CO2 balance in a subarctic fen. Geophys Res Lett 31:L16119. doi:10.1029/2004GL020315

    Article  Google Scholar 

  • Aurela M, Riutta T, Laurila T, Tuovinen J-P, Vesala T, Tuittila E-S, Rinne J, Haapanala S, Laine J (2007) CO2 exchange of a sedge fen in southern Finland—The impact of a drought period. Tellus B 59:826–837

    Article  Google Scholar 

  • Bauer IE (2004) Modelling effects of litter quality and environment on peat accumulation over different time-scales. J Ecol 92:661–674

    Article  Google Scholar 

  • Belyea LR (1996) Separating the effects of litter quality and microenvironment on decomposition rates in a patterned peatland. Oikos 77:529–539

    Article  Google Scholar 

  • Berg B, Ekbohm G (1991) Litter mass-loss rates and decomposition patterns in some needle and leaf litter types. Long-term decomposition in a Scots pine forest. VII. Can J Bot 69:1449–1456

    Article  Google Scholar 

  • Berg B, Hannus K, Popoff T, Theander O (1982) Changes in organic-chemical components during decomposition. Long-term decomposition in a Scots pine forest I. Can J Bot 60:1310–1319

    CAS  Google Scholar 

  • Berg B, McClaugherty C (2003) Plant Litter—Decomposition, Humus Formation. Carbon Sequestration, Springer Verlag, Heidelberg, Berlin, New York

    Google Scholar 

  • Berg EE, McDonnell Hillman K, Dial R, DeRuwe A (2009) Recent woody invasion of wetlands on the Kenai Peninsula Lowlands, south-central Alaska: a major regime shift after 18 000 years of wet Sphagnum–sedge peat recruitment. Can J For Res 39:2033–2046

    Article  Google Scholar 

  • Blair JM (1988) Nitrogen, sulfur and phosphorus dynamics in decomposing deciduous leaf litter in the southern Appalachians. Soil Biol Biochem 20:693–701

    Article  CAS  Google Scholar 

  • Boggie R (1977) Water-table depth and oxygen content of deep peat in relation to root growth of Pinus contorta. Plant Soil 48:447–454

    Article  Google Scholar 

  • Box EO (1996) Plant Functional Types and Climate at the Global Scale. J Veg Sci 7:309–320

    Article  Google Scholar 

  • Bragazza L, Siffi C, Iacumin P, Gerdol R (2007) Mass loss and nutrient release during litter decay in peatland: The role of microbial adaptability to litter chemistry. Soil Biol Biochem 39:257–267

    Article  CAS  Google Scholar 

  • Bubier JL, Bhatia G, Moore TR, Roulet NT, Lafleur PM (2003) Spatial and temporal variability in growing-season net ecosystem carbon dioxide exchange at a large peatland in Ontario, Canada. Ecosystems 6:353–367

    CAS  Google Scholar 

  • Chivers MR, Turetsky MR, Waddington JM, Harden JW, McGuire AD (2009) Effects of experimental water table and temperature manipulations on ecosystem CO2 fluxes in an Alaskan rich fen. Ecosystems 12:1329–1342

    Article  CAS  Google Scholar 

  • Clymo RS (1984) The limits to peat bog growth. Philos Trans Royan Soc Lond B 303:605–654

    Article  Google Scholar 

  • Comont L, Laggoun-Défarge F, Disnar J (2006) Evolution of organic matter indicators in response to major environmental changes: The case of a formerly cut-over peat bog (Le Russey, Jura Mountains, France). Org Geochem 37:1736–1751

    Article  CAS  Google Scholar 

  • Cornelissen JH, van Bodegom PM, Aerts R et al (2007) Global negative vegetation feedback to climate warming responses of leaf litter decomposition rates in cold biomes. Ecol Lett 10:619–627

    Article  PubMed  Google Scholar 

  • Cornwell WK, Cornelissen JHC, Amatangelo K et al (2008) Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol Lett 11:1065–1071

    Article  PubMed  Google Scholar 

  • Currie WS, Aber JD (1997) Modeling leaching as a decomposition process in humid, montane forests. Ecology 78:1844–1860

    Article  Google Scholar 

  • Dorrepaal E (2007) Are plant growth-form-based classifications useful in predicting northern ecosystem carbon cycling feedbacks to climate change? J Ecol 95:1167–1180

    Article  Google Scholar 

  • Dorrepaal E, Cornelissen JHC, Aerts R, Wallén B, van Logtestijn RSP (2005) Are growth forms consistent predictors of leaf litter quality and decomposability across peatlands along a latitudinal gradient? J Ecol 93:817–828

    Article  Google Scholar 

  • Dukes JS, Hungate BA (2002) Elevated carbon dioxide and litter decomposition in California annual grasslands: which mechanisms matter? Ecosystems 5:171–183

    Article  CAS  Google Scholar 

  • Edmonds RL (1987) Decomposition rates and nutrient dynamics in small-diameter woody litter in four forest ecosystems in Washington, U.S.A. Can J For Res 17:499–509

    Article  CAS  Google Scholar 

  • Ehrman T (1996) Determination of acid-soluble lignin in biomass. LAP-004 1–7

  • Eriksson KE, Blanchette RA, Ander P (1990) Microbial and enzymatic degradation of wood and wood components. Springer Verlag, Berlin

    Google Scholar 

  • Finzi AC, Schlesinger WH (2002) Species control variation in litter decomposition in a pine forest exposed to elevated CO2. Glob Change Biol 8:1217–1229

    Article  Google Scholar 

  • Fog K (1988) The effect of added nitrogen on the rate of decomposition of organic matter. Biol Rev 63:433–462

    Article  Google Scholar 

  • Frolking S., Roulet NT, Moore TR, Lafleur PM, Bubier JL, Crill PM (2002) Modeling the seasonal and annual carbon balance of Mer Bleue bog, Ontario, Canada. Global Biogeochemical Cycles 16, doi:10.1029/2001GB001457

  • Gartner TB, Cardon ZG (2004) Decomposition dynamics in mixed-species leaf litter. Oikos 104:230–246

    Article  Google Scholar 

  • Gitay H, Brown S, Easterling W et al (2001) Ecosystems and their goods and services. In: McCarthy JJ, Canziani OF, Leary NA, Dokken DJ, White KS (eds) Climate change 2001, impacts, adaptation, and vulnerability. Contribution of Working Group II to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 235–342

    Google Scholar 

  • Gorham E (1991) Northern peatlands: role in the carbon cycle and probable responses to climatic warming. Ecol Appl 1:182–195

    Article  Google Scholar 

  • Graca MAS, Bärlocher F, Gessner MO (2005) Methods to Study Litter Decomposition: a Practical Guide. Springer, Dordrecht

    Google Scholar 

  • Hájek T, Tuittila ES, Ilomets M, Laiho R (2009) Light responses of mire mosses—a key to survival after water-level drawdown? Oikos 118:240–250

    Article  Google Scholar 

  • Hargreaves KJ; Milne R; Cannell MGR (2003) Carbon balance of afforested peatland in Scotland. Forestry 76:299–31

    Article  Google Scholar 

  • Hedges JI, Ertel JR (1982) Characterization of lignin by capillary chromatography of cupric oxide oxidation products. Anal Chem 54:174–178

    Article  CAS  Google Scholar 

  • Henry HAL, Cleland EE, Field CB, Vitousek PM (2005) Interactive effects of elevated CO2, N deposition and climate change on plant litter quality in a California annual grassland. Oecologia 142:465–473

    Article  PubMed  Google Scholar 

  • Hobbie SE (1996) Temperature and plant species control over litter decomposition in Alaskan tundra. Ecol Monogr 66:503–522

    Article  Google Scholar 

  • Hobbie SE, Schimel JP, Trumbore SE, Randerson JR (2000) Controls over carbon storage and turnover in high-latitude soils. Global Change Biology 6:196–210

    Article  Google Scholar 

  • Hökkä H, Penttilä T (1999) Modelling the dynamics of wood productivity on drained peatland sites in Finland. Silva Fennica 33:25–39

    Google Scholar 

  • Ilomets M (1974) Some aspects of measuring the growth of Sphagnum. In: Kumari E (ed) Estonian Wetlands and Their Life. Valgus, Tallinn, pp 191–203

    Google Scholar 

  • Jaatinen K, Laiho R, Vuorenmaa A, del Castillo U, Minkkinen K, Pennanen T, Penttilä T, Fritze H (2008) Responses of aerobic microbial communities and soil respiration to a water-level drawdown in a northern boreal fen. Environ Microbiol 10:339–353

    Article  CAS  PubMed  Google Scholar 

  • Johnson LC, Damman AWH (1991) Species-controlled Sphagnum decay on a South Swedish raised bog. Oikos 61:234–242

    Article  Google Scholar 

  • Joosten H, Clarke D (2002) Wise use of mires and peatlands: Background and principles including a framework for decision-making. International Mire Conservation Group and International Peat Society, Saarijärvi

    Google Scholar 

  • Kemp PR, Waldecker D, Owensby CE, Reynolds JF, Virginia RA (1994) Effects of elevated CO2 and nitrogen fertilization pretreatments on decomposition of tallgrass prairie leaf litter. Plant Soil 165:115–127

    Article  CAS  Google Scholar 

  • Laganière J, Paré D, Bradley RL (2010) How does a tree species influence litter decomposition? Separating the relative contribution of litter quality, litter mixing, and forest floor conditions. Can J For Res 40:465–475

    Article  Google Scholar 

  • Lähde E (1969) Biological activity in some natural and drained peat soils with special reference to oxidation-reduction conditions. Acta Forestalia Fennica 94:1–69

    Google Scholar 

  • Laiho R, Minkkinen K, Anttila J, Vávřová P, Penttilä T (2008) Dynamics of litterfall and decomposition in peatland forests: Towards reliable carbon balance estimation? In: Vymazal J (ed) Wastewater treatment, plant dynamics and management in constructed and natural wetlands. Springer Science + Business Media, Dordrecht, pp 53–64

    Chapter  Google Scholar 

  • Laiho R, Vasander H, Penttilä T, Laine J (2003) Dynamics of plant-mediated organic matter and nutrient cycling following water-level drawdown in boreal peatlands. Glob Biogeochem Cycles 17(2):1053. doi:10.1029/2002GB002015

    Article  Google Scholar 

  • Laiho R (2006) Decomposition in peatlands: Reconciling seemingly contrasting results on the impacts of lowered water levels. Soil Biol Biochem 38:2011–2024

    Article  CAS  Google Scholar 

  • Laine J, Komulainen VM, Laiho R et al (2004) Lakkasuo—a guide to mire ecosystem. Univ Helsinki Dept For Ecol Publ 31:1–123

    Google Scholar 

  • Laine J, Vanha-Majamaa I (1992) Vegetation ecology along a trophic gradient on drained pine mires in southern Finland. Ann Botanici Fennici 29:213–233

    Google Scholar 

  • Laine J, Vasander H, Laiho R (1995) Long-term effects of water level drawdown on the vegetation of drained pine mires in southern Finland. J Appl Ecol 32:785–802

    Article  Google Scholar 

  • Leps J, Smilauer P (2003) Multivariate analysis of ecological data using CANOCO. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Limpens J, Berendse F (2003) How litter quality affects mass loss and N loss from decomposing Sphagnum. Oikos 103:537–547

    Article  CAS  Google Scholar 

  • Liski J, Palosuo T, Peltoniemi M, Sievänen R (2005) Carbon and decomposition model Yasso for forest soils. Ecol Model 189:168–182

    Article  CAS  Google Scholar 

  • Mäkiranta P, Minkkinen K, Hytönen J, Laine J (2008) Factors causing temporal and spatial variation in heterotrophic and rhizospheric components of soil respiration in afforested organic soil croplands in Finland. Soil Biol Biochem 40:1592–1600

    Article  Google Scholar 

  • Malmer N, Albinsson C, Svensson BM, Wallén B (2003) Interferences between Sphagnum and vascular plants: effects on plant community structure and peat formation. Oikos 100:469–482

    Article  Google Scholar 

  • McClaugherty CA, Pastor J, Aber JD, Melillo JM (1985) Forest Litter Decomposition in Relation to Soil Nitrogen Dynamics and Litter Quality. Ecology 66:266–275

    Article  Google Scholar 

  • Minkkinen K, Laine J, Shurpali NJ, Mäkiranta P, Alm J, Penttilä T (2007) Heterotrophic soil respiration in forestry-drained peatlands. Boreal Environ Res 12:115–126

    CAS  Google Scholar 

  • Moore TR, Trofymow JA, Taylor B et al (1999) Litter decomposition rates in Canadian forests. Glob Change Biol 5:75–82

    Article  Google Scholar 

  • Moorhead DL, Reynolds JF (1991) A general model of litter decomposition in the northern Chihuahuan Desert. Ecol Model 59:197–219

    Article  Google Scholar 

  • Murphy M, Laiho R, Moore TR (2009) Effects of water table drawdown on root production and aboveground biomass in a boreal bog. Ecosystems 12:1268–1282

    Article  CAS  Google Scholar 

  • Nilsson M-C, Wardle DA, DeLuca TH (2008) Belowground and aboveground consequences of interactions between live plant species mixtures and dead organic substrate mixtures. Oikos 117:439–449

    Article  Google Scholar 

  • Päivänen J, Vasander H (1994) Carbon balance in mire ecosystems. World Resour Rev 6:102–111

    Google Scholar 

  • Parton WJ, Schimel DS, Cole CV, Ojima DS (1987) Analysis of factors controlling soil organic matter levels in Great Plains Grasslands. Soil Sci Soc Am J 51:1173–1179

    Article  CAS  Google Scholar 

  • Preston CM, Trofymow JA, CIDET Working Group (2000) Variability in litter quality and its relationship to litter decay in Canadian forests. Can J Bot 78:1269–1287

    Article  Google Scholar 

  • Prevost M, Plamondon AP, Belleau P (1999) Effects of drainage of a forested peatland on water quality and quantity. J Hydrol 214:130–143

    Article  CAS  Google Scholar 

  • Quarmby C, Allen SE (1989) Organic constituents. In: Allen SE (ed) Chemical Analysis of Ecological Materials. Wiley, New York, pp 160–201

    Google Scholar 

  • Quested HM, Cornelissen JHC, Press MC et al (2003) Decomposition of sub-arctic plants with differing nitrogen economies: A functional role for hemiparasites. Ecology 84:3209–3221

    Article  Google Scholar 

  • Rasmussen S, Wolff C, Rudolph H (1995) Compartmentalization of phenolic constituents in Sphagnum. Phytochemistry 38:35–39

    Article  CAS  Google Scholar 

  • Rastetter EB, Ryan MG, Shaver GR, Melillo JM, Nadelhoffer KJ, Hobbie JE, Aber JD (1991) A general model describing the responses of the C and N cycles in terrestrial ecosystems to changes in CO2, climate, and N deposition. Tree Physiol 9:101–126

    CAS  PubMed  Google Scholar 

  • Roulet N, Moore T, Bubier J, Lafleur P (1992) Northern fens: methane flux and climatic change. Tellus 44B:100–105

    CAS  Google Scholar 

  • Roulet NT, Lafleur PM, Richard PJH, Moore TR, Humphreys ER, Bubier J (2007) Contemporary carbon balance and late Holocene carbon accumulation in a northern peatland. Glob Change Biol 13:397–411

    Article  Google Scholar 

  • Ryan MG, Melillo JM, Ricca A (1990) A comparison of methods for determining proximate carbon fractions of forest litter. Can J For Res 20:166–171

    Article  Google Scholar 

  • Saarinen T (1996) Biomass and production of two vascular plants in a boreal mesotrophic fen. Can J Bot 74:934–938

    Article  Google Scholar 

  • Saiya-Cork KR, Sinsabaugh RL, Zak DR (2002) The effects of long term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil. Soil Biol Biochem 34:1309–1315

    Article  CAS  Google Scholar 

  • Saleska SR, Shaw MR, Fischer ML, Dunne JA, Still CJ, Holman ML, Harte J (2002) Plant community composition mediates both large transient decline and predicted long-term recovery of soil carbon under climate warming. Glob Biogeochem Cycles 16:1055–1072

    Article  Google Scholar 

  • Sallantaus T (1992) Leaching in the material balance of peatlands—preliminary results. Suo 43:253–258

    Google Scholar 

  • Sariyildiz T, Anderson JM (2003) Interactions between litter quality, decomposition and soil fertility: a laboratory study. Soil Biol Biochem 35:391–399

    Article  CAS  Google Scholar 

  • Scowcroft PS (1997) Mass and nutrient dynamics of decaying litter from Passiflora mollissima and selected native species in a Hawaiian montane rain forest. J Trop Ecol 13:407–426

    Article  Google Scholar 

  • Silins U, Rothwell RL (1999) Spatial patterns of aerobic limit depth and oxygen diffusion rate at two peatlands drained for forestry in Alberta. Can J For Res 29:53–61

    Article  Google Scholar 

  • Stohlgren TJ (1988) Litter dynamics in two Sierran mixed conifer forests, II: Nutrient release in decomposing leaf litter. Can J For Res 18:1136–1144

    Article  Google Scholar 

  • Suding KN, Lavorel S, Chapin FS et al (2008) Scaling environmental change through the community-level: a trait-based response-and-effect framework for plants. Glob Change Biol 14:1125–1140

    Article  Google Scholar 

  • Sundberg A, Pranovich AV, Holmbom B (2003) Chemical characterization of various types of mechanical pulp fines. J Pulp Pap Sci 29:173–178

    CAS  Google Scholar 

  • Sundberg A, Sundberg K, Lillandt C, Holmbom B (1996) Determination of hemicelluloses and pectins in wood and pulp fibres by acid methanolysis and gas chromatography. Nord Pulp Pap Res J 11:216–219

    Article  CAS  Google Scholar 

  • Szumigalski AR, Bayley SE (1996) Decomposition along a bog to rich fen gradient in central Alberta, Canada. Can J Bot 74:573–581

    Article  Google Scholar 

  • Talbot J, Richard PJH, Roulet NT, Booth RK (2010) Assessing long-term hydrological and ecological responses to drainage in a raised bog using paleoecology and a hydrosequence. J Veg Sci 21:143–156

    Article  Google Scholar 

  • Taylor BR, Parkinson D, Parsons WJF (1989) Nitrogen and lignin content as predictors of litter decay rates: a microcosm test. Ecology 70:97–104

    Article  Google Scholar 

  • Taylor BR, Prescott CE, Parsons WJF, Parkinson D (1991) Substrate control of litter decomposition in four Rocky Mountain coniferous forests. Can J Bot 69:2242–2250

    Article  Google Scholar 

  • ter Braak CJ, Smilauer P (2002) CANOCO for Windows, version 4.5. Biometris – Plant Research International, Wageningen, The Netherlands

  • Thormann MN, Bayley SE, Currah RS (2001) Comparison of decomposition of belowground and aboveground plant litters in peatlands of boreal Alberta, Canada. Can J Bot 79:9–22

    Article  CAS  Google Scholar 

  • Tian G, Kang BT, Brussaard L (1992) Biological effects of plant residues with contrasting chemical compositions under humid tropical conditions—Decomposition and nutrient release. Soil Biol Biochem 24:1051–1060

    Article  CAS  Google Scholar 

  • Turetsky MR, Crow SE, Evans RJ, Vitt DH, Wieder KR (2008) Trade-offs in resource allocation among moss species control decomposition in boreal peatlands. J Ecol 96:1297–1305

    Article  Google Scholar 

  • Wallén B (1992) Methods for studying below-ground production in mire ecosystems. Suo 43:155–162

    Google Scholar 

  • Wallén B (1986) Above and below ground dry mass of the three main vascular plants on hummocks on a subarctic peat bog. Oikos 46:51–56

    Article  Google Scholar 

  • Wania R, Ross I, Prentice IC (2009) Integrating peatlands and permafrost into a dynamic global vegetation model: II. Evaluation and sensitivity of vegetation and carbon cycle processes. Global Biogeochemical Cycles 23, GB3015, doi:10.1029/2008GB003413

  • Weatherly HE, Zitzer SF, Coleman JS, Arnone JAI (2003) In situ litter decomposition and litter quality in a Mohave Desert ecosystem: effects of elevated atmospheric CO2 and interannual climate variability. Global Change Biology 9:1223–1233

    Article  Google Scholar 

  • Weltzin JF, Bridgham SD, Pastor J, Chen JQ, Harth C (2003) Potential effects of warming and drying on peatland plant community composition. Global Change Biology 9:141–151

    Article  Google Scholar 

  • Weltzin JF, Pastor J, Harth C, Bridgham SD, Updegraff K, Chapin CT (2000) Response of bog and fen plant communities to warming and water-table manipulations. Ecology 81:3464–3478

    Article  Google Scholar 

  • Wieder RK, Starr ST (1998) Quantitative determination of organic fractions in highly organic, Sphagnum peat soils. Commun Soil Sci Plant Anal 29:847–857

    Article  CAS  Google Scholar 

  • Williams CJ, Yavitt JB, Wieder RK, Cleavitt NL (1998) Cupric oxide oxidation products of northern peat and peat-forming plants. Can J Bot 76:51–62

    Article  CAS  Google Scholar 

  • Wilson MA, Sawyer J, Hatcher PG, Lerch HE (1989) 1-3-5 Hydroxybenzene structures in mosses. Phytochemistry 28:1395–1400

    Article  CAS  Google Scholar 

  • Zhang Y, Li C, Trettin C, Li H, Sun G (2002) An integrated model of soil, hydrology, and vegetation for carbon dynamics in wetland ecosystems. Glob Biogeochem Cycles 16, 1061, doi:10.1029/2001GB001838

Download references

Acknowledgements

This study was supported by the Academy of Finland projects 104425 and 106197. We thank Satu Repo, Tuija Hytönen, Minna Piippo and Päivi Paasela for their valuable help with the laboratory work, Timo Penttilä, Nigel Roulet and the other reviewers for helpful comments on the manuscript, Meeri Pearson for correcting the language, and Jan Květ for pre-submission review of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petra Straková.

Additional information

Responsible Editor: Per Ambus.

Appendices

Appendix 1

Table 4 Litter quality parameters, mean values per litter type (mg·g−1 of dry mass) with standard error of mean in parentheses. The standard error indicates variation in litter quality between plots of different nutrient and/or water level regimes
 

NPE

AE

EE

WE

cel

ara

rha

xyl

man

gal

glu

gl.ac

gal.ac

hol

P1

P2

P3

V1

V2

V3

S1

S2

S3

C1

C2

Kl.lig

Sol.lig

Kl.lig:N

PN

142.1 (3.0)

28.36 (1.66)

67.38 (3.86)

88.26 (2.77)

251.7 (13.9)

22.46 (1.66)

4.84 (0.46)

13.76 (1.52)

45.36 (3.07)

25.69 (1.29)

51.99 (3.62)

1.21 (0.39)

33.65 (2.88)

445.8 (6.3)

1.26 (0.03)

0.38 (0.01)

1.26 (0.03)

13.26 (0.59)

1.69 (0.07)

3.23 (0.41)

0 (0)

0 (0)

0 (0)

4.35 (0.17)

1.88 (0.04)

227.1 (6.6)

14.0 (0.4)

53.6 (2.7)

PC

24.9 (5.0)

7.04 (2.48)

12.61 (1.90)

27.34 (1.62)

339.2 (16.7)

11.97 (0.48)

1.78 (0.23)

18.32 (0.86)

111.26 (5.62)

26.44 (1.63)

36.00 (1.49)

0 (0)

12.62 (0.72)

566.6 (7.4)

0.17 (0.02)

0.05 (0.005)

0.08 (0.01)

20.89 (4.02)

1.96 (0.35)

2.78 (0.43)

0.004 (0.001)

0.019 (0.003)

0.009 (0.002)

0.08 (0.01)

0.50 (0.06)

345.7 (11.9)

11.1 (0.5)

109.1 (10.2)

PB1

61.9 (7.0)

9.27 (1.10)

16.85 (2.03)

24.82 (1.29)

193.3 (20.7)

19.21 (1.96)

4.09 (0.24)

38.21 (4.03)

45.49 (2.50)

44.94 (2.87)

50.18 (4.58)

3.90 (1.85)

16.83 (1.34)

511.6 (15.1)

1.04 (0.09)

0.25 (0.02)

0.26 (0.02)

44.39 (2.79)

5.34 (0.96)

5.65 (0.44)

0.008 (0.001)

0.051 (0.006)

0.020 (0.006)

0.12 (0.02)

2.58 (0.34)

374.4 (11.0)

14.0 (1.3)

65.9 (5.7)

PB2

33.3 (2.8)

9.17 (0.78)

16.47 (2.26)

23.26 (2.26)

254.7 (42.2)

15.45 (1.58)

2.76 (0.41)

49.84 (4.43)

44.54 (4.52)

48.62 (3.33)

35.77 (3.42)

1.22 (0.62)

13.52 (2.03)

581.5 (15.1)

1.93 (0.09)

0.36 (0.05)

0.32 (0.04)

51.95 (6.30)

7.32 (1.35)

9.32 (0.27)

0.005 (0.003)

0.034 (0.022)

0.003 (0.002)

0.08 (0.01)

1.81 (0.13)

373.6 (12.3)

12.3 (0.7)

129.0 (6.7)

BN

88.9 (2.2)

68.76 (4.63)

95.08 (5.07)

116.93 (2.32)

101.6 (15.3)

21.89 (0.77)

17.70 (0.55)

36.26 (2.16)

4.08 (1.33)

28.15 (0.93)

34.75 (1.31)

0.96 (0.49)

60.38 (2.38)

258.3 (6.9)

0.28 (0.02)

0.77 (0.04)

0.49 (0.02)

5.16 (0.28)

0.81 (0.04)

3.30 (0.19)

0.146 (0.010)

0.331 (0.026)

1.31 (0.12)

0.93 (0.03)

0.56 (0.03)

327.0 (4.5)

16.6 (1.3)

38.5 (4.6)

BNB

34.8 (3.5)

23.89 (3.51)

18.43 (3.87)

30.73 (1.10)

103.6 (8.8)

20.32 (1.65)

4.77 (0.36)

88.04 (11.22)

6.87 (1.10)

17.95 (1.26)

30.10 (3.79)

1.08 (0.47)

25.44 (1.80)

538.4 (6.0)

0.20 (0.04)

0.05 (0.003)

0.09 (0.01)

10.42 (2.06)

1.24 (0.28)

1.60 (0.28)

2.312 (0.613)

3.755 (0.372)

25.6 (1.9)

0.12 (0.01)

1.55 (0.11)

488.1 (18.9)

19.1 (0.9)

62.1 (1.5)

BP

94.6 (11.5)

41.48 (5.08)

122.66 (3.11)

137.88 (9.41)

67.7 (3.2)

23.96 (3.92)

16.53 (3.00)

38.76 (6.18)

3.32 (0.55)

27.98 (3.61)

30.96 (3.85)

0.93 (0.93)

71.37 (10.83)

320.9 (22.8)

0.67 (0.04)

0.68 (0.16)

0.74 (0.04)

3.74 (0.20)

0.61 (0.03)

2.44 (0.09)

0.300 (0.015)

0.670 (0.015)

3.43 (0.11)

3.33 (0.69)

0.66 (0.07)

257.2 (2.7)

10.9 (0.5)

32.4 (3.3)

BPB

16.4 (2.9)

13.97 (1.76)

9.47 (0.77)

15.63 (1.64)

270.8 (33.8)

4.62 (0.21)

3.85 (0.17)

149.47 (4.43)

7.43 (0.85)

13.44 (1.10)

22.62 (2.00)

2.25 (0.13)

19.26 (1.14)

754.6 (3.0)

0.19 (0.03)

0.04 (0.01)

0.07 (0.01)

16.07 (0.82)

1.45 (0.10)

2.97 (0.13)

5.150 (0.685)

7.623 (0.676)

47.0 (3.3)

0.10 (0.03)

1.32 (0.24)

349.6 (12.9)

18.0 (0.9)

112.3 (10.1)

CR

38.0 (1.9)

35.51 (1.27)

45.71 (2.01)

80.17 (2.57)

303.9 (27.1)

38.46 (3.70)

1.96 (0.04)

146.73 (6.62)

2.54 (0.17)

15.45 (0.48)

38.13 (1.62)

16.41 (1.56)

11.65 (0.56)

650.1 (10.7)

1.57 (0.03)

0.29 (0.01)

0.69 (0.07)

4.43 (0.43)

0.55 (0.04)

0.91 (0.05)

1.980 (0.115)

7.018 (0.329)

13.05 (0.48)

21.26 (1.19)

13.41 (0.61)

234.8 (4.7)

20.1 (3.0)

30.7 (1.7)

CL

31.4 (6.0)

26.88 (1.33)

25.54 (2.99)

58.38 (8.70)

333.1 (9.9)

46.22 (5.78)

2.78 (0.18)

163.69 (4.89)

3.08 (0.18)

20.01 (1.89)

35.38 (2.81)

20.10 (0.47)

14.90 (0.83)

622.8 (19.4)

3.27 (0.65)

0.56 (0.07)

2.26 (0.73)

8.74 (1.07)

0.87 (0.12)

1.09 (0.09)

3.232 (0.678)

9.504 (1.045)

17.54 (2.42)

32.85 (5.99)

11.86 (1.06)

287.3 (5.8)

18.5 (1.1)

37.9 (3.4)

EV

24.5 (0.8)

35.63 (1.80)

44.97 (1.81)

49.25 (1.77)

368.6 (40.8)

49.19 (2.96)

1.78 (0.46)

154.16 (6.54)

2.91 (0.40)

17.45 (0.78)

41.99 (2.92)

6.07 (2.15)

13.80 (1.01)

643.2 (9.1)

0.85 (0.03)

0.26 (0.02)

0.66 (0.03)

4.41 (0.28)

0.60 (0.04)

1.35 (0.03)

1.577 (0.057)

4.109 (0.292)

14.71 (0.44)

14.28 (0.28)

13.38 (0.56)

278.7 (2.4)

21.4 (1.0)

45.8 (1.7)

EVB

9.4 (1.9)

64.98 (2.91)

34.20 (2.27)

63.90 (5.75)

319.8 (24.0)

79.08 (6.42)

2.78 (0.29)

147.87 (12.99)

5.18 (0.47)

34.47 (2.64)

29.59 (2.85)

5.77 (1.50)

11.25 (1.05)

634.9 (10.2)

1.34 (0.06)

0.25 (0.02)

0.32 (0.02)

14.59 (1.04)

1.81 (0.16)

2.98 (0.12)

1.156 (0.126)

1.724 (0.091)

10.04 (0.46)

9.21 (0.51)

16.32 (0.82)

287.3 (4.4)

14.7 (0.7)

61.2 (5.3)

RC

63.5 (3.4)

53.62 (1.22)

72.51 (8.25)

139.98 (4.99)

85.2 (17.6)

23.60 (2.82)

10.70 (1.24)

15.98 (2.14)

4.65 (0.77)

44.54 (4.17)

47.00 (5.09)

3.43 (1.16)

47.03 (4.49)

199.0 (5.6)

0.14 (0.03)

0.02 (0.01)

0.20 (0.02)

1.15 (0.25)

0.23 (0.04)

1.40 (0.16)

0.135 (0.023)

0.288 (0.038)

0.883 (0.148)

0.52 (0.05)

0.67 (0.13)

232.3 (16.8)

83.7 (2.8)

15.2 (1.5)

VU

61.8 (3.1)

42.56 (2.75)

120.08 (8.64)

163.15 (9.46)

106.9 (13.9)

21.31 (1.31)

4.15 (0.25)

40.46 (3.10)

2.65 (0.19)

20.49 (0.86)

29.59 (2.18)

9.88 (1.27)

95.28 (7.16)

284.8 (6.6)

0.21 (0.02)

0.10 (0.01)

0.82 (0.08)

4.40 (0.40)

0.86 (0.04)

5.54 (0.50)

0.180 (0.004)

0.296 (0.011)

1.222 (0.106)

3.40 (0.16)

1.13 (0.07)

349.2 (16.2)

18.9 (0.8)

45.7 (4.9)

LP

122.9 (3.1)

42.46 (2.89)

48.04 (3.30)

104.37 (5.49)

61.2 (4.8)

25.90 (0.91)

7.29 (0.15)

25.33 (1.21)

4.64 (0.19)

30.69 (0.97)

44.00 (0.76)

1.63 (0.68)

49.42 (1.00)

296.2 (5.8)

0.11 (0.02)

0.24 (0.02)

0.83 (0.08)

0.78 (0.16)

0.31 (0.01)

1.08 (0.30)

0.173 (0.010)

0.242 (0.011)

0.656 (0.116)

3.48 (0.29)

1.98 (0.16)

400.8 (11.6)

18.5 (0.4)

45.9 (0.7)

PLS

41.8 (9.4)

18.70 (11.97)

20.70 (1.87)

58.88 (7.42)

121.4 (15.2)

17.92 (0.33)

38.16 (1.78)

20.21 (0.83)

85.21 (3.74)

68.95 (2.88)

60.16 (4.63)

1.37 (1.37)

67.86 (3.19)

436.4 (42.4)

0.42 (0.05)

15.33 (0.79)

1.75 (0.13)

0.45 (0.22)

0.16 (0.02)

0.12 (0.04)

0.023 (0.003)

0.018 (0.006)

0.068 (0.008)

0.52 (0.02)

0.06 (0.02)

306.2 (15.0)

16.7 (3.0)

39.7 (2.2)

SA

36.6 (7.3)

19.92 (4.22)

26.84 (3.57)

54.47 (5.49)

140.3 (10.9)

10.84 (0.42)

54.76 (2.36)

44.08 (2.17)

30.30 (1.63)

81.26 (3.27)

57.54 (2.45)

21.63 (1.02)

76.06 (2.47)

699.3 (17.3)

2.47 (0.22)

10.20 (0.89)

2.11 (0.16)

0.23 (0.04)

0.06 (0.01)

0.05 (0.01)

0.022 (0.005)

0.022 (0.005)

0.077 (0.023)

0.33 (0.02)

0.06 (0.02)

106.4 (10.2)

60.0 (4.0)

14.3 (1.9)

SFA

40.6 (11.4)

13.59 (2.66)

22.25 (4.01)

40.92 (3.74)

222.1 (31.1)

8.98 (0.98)

48.95 (3.27)

39.03 (4.82)

26.00 (2.19)

74.78 (5.67)

51.49 (4.14)

14.89 (2.23)

67.06 (5.79)

708.5 (8.8)

2.84 (0.24)

10.40 (1.18)

2.21 (0.27)

0.16 (0.04)

0.04 (0.003)

0.04 (0.01)

0.030 (0.006)

0.027 (0.005)

0.090 (0.016)

0.39 (0.04)

0.05 (0.01)

109.9 (4.4)

58.7 (2.5)

16.1 (2.1)

SP

62.6 (11.1)

20.94 (5.39)

33.42 (8.29)

47.74 (9.55)

219.0 (27.8)

3.77 (1.03)

31.58 (0.79)

31.19 (1.45)

24.40 (1.78)

49.00 (1.74)

55.81 (2.00)

11.21 (2.89)

47.23 (0.64)

612.7 (34.3)

3.31 (0.20)

12.91 (0.67)

4.24 (0.44)

0.25 (0.02)

0.11 (0.02)

0.06 (0.01)

0.091 (0.021)

0.057 (0.007)

0.232 (0.013)

0.56 (0.03)

0.14 (0.01)

219.0 (21.8)

52.3 (3.8)

32.4 (6.4)

SR

82.5 (3.4)

26.27 (6.04)

22.94 (10.21)

68.75 (8.85)

230.3 (21.3)

5.56 (3.09)

39.96 (2.80)

33.52 (3.84)

18.76 (0.63)

54.59 (4.86)

54.78 (3.81)

16.05 (2.79)

59.07 (3.55)

630.3 (20.9)

2.57 (0.48)

12.22 (2.03)

2.52 (0.30)

0.38 (0.13)

0.10 (0.01)

0.08 (0.02)

0.032 (0.016)

0.030 (0.009)

0.110 (0.041)

0.41 (0.04)

0.06 (0.005)

139.2 (21.0)

58.2 (5.6)

22.0 (3.7)

SMG

46.3 (7.5)

29.46 (6.70)

27.99 (6.62)

62.22 (9.02)

226.6 (23.9)

6.13 (0.39)

36.34 (1.94)

32.90 (1.76)

19.95 (1.19)

46.46 (2.12)

58.71 (2.81)

26.78 (1.33)

51.23 (2.89)

662.3 (28.6)

2.71 (0.32)

9.41 (3.27)

1.16 (1.11)

0.80 (0.11)

0.23 (0.05)

3.27 (1.56)

0.030 (0.005)

0.030 (0.00001)

0.121 (0.016)

0.49 (0.02)

0.10 (0.02)

132.2 (20.6)

67.0 (2.6)

16.6 (2.8)

SB

35.1 (9.9)

20.78 (4.33)

33.87 (1.82)

55.71 (19.39)

204.3 (2.1)

8.44 (2.76)

43.00 (0.56)

47.51 (0.15)

33.53 (2.48)

79.72 (2.86)

56.47 (0.20)

7.58 (3.20)

58.29 (5.29)

655.4 (33.5)

2.38 (0.28)

10.55 (1.05)

1.96 (0.11)

0.14 (0.03)

0.04 (0.002)

0.03 (0.01)

0.014 (0.001)

0.010 (0.003)

0.047 (0.004)

0.30 (0.03)

0.06 (0.04)

150.2 (31.9)

53.9 (0.1)

22.8 (4.6)

SFC

54.9 (6.1)

25.80 (6.13)

34.33 (3.19)

76.58 (17.84)

226.2 (16.8)

4.15 (1.84)

41.81 (0.54)

37.26 (2.25)

19.90 (0.85)

51.43 (1.76)

56.31 (0.82)

28.60 (1.74)

57.79 (0.08)

556.2 (29.6)

2.77 (0.27)

10.01 (2.20)

3.02 (0.29)

0.27 (0.05)

0.09 (0.01)

0.11 (0.05)

0.029 (0.008)

0.029 (0.004)

0.105 (0.028)

0.47 (0.08)

0.11 (0.03)

234.0 (33.8)

48.7 (1.6)

34.7 (4.5)

SCU

17.3 (4.1)

28.24 (0.15)

17.15 (0.44)

83.98 (1.40)

293.7 (14.7)

10.21 (2.13)

39.22 (1.45)

48.51 (2.13)

35.55 (0.10)

91.59 (9.98)

74.26 (4.44)

9.87 (0.29)

52.87 (0.39)

709.0 (5.9)

3.03 (0.37)

10.09 (1.51)

2.50 (0.40)

0.10 (0.02)

0.04 (0.0003)

0.03 (0.01)

0.019 (0.003)

0.015 (0.003)

0.054 (0.015)

0.34 (0.05)

0.08 (0.01)

81.8 (30.2)

76.9 (2.3)

11.4 (1.9)

Appendix 2

Fig. 7
figure 7

Tree diagram from cluster analysis showing differences between litter types based on their chemical composition. Pinus sylvestris branches 1, branches with diameter ≤1 cm; Pinus sylvestris branches 2, branches with diameter 1–2 cm

Rights and permissions

Reprints and permissions

About this article

Cite this article

Straková, P., Anttila, J., Spetz, P. et al. Litter quality and its response to water level drawdown in boreal peatlands at plant species and community level. Plant Soil 335, 501–520 (2010). https://doi.org/10.1007/s11104-010-0447-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-010-0447-6

Keywords

Navigation