Skip to main content
Log in

The Arabidopsis thaliana transcription factor MYB59 regulates calcium signalling during plant growth and stress response

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Key message

Transcription factor MYB59 is involved in plant growth and stress responses by acting as negative regulator of Ca signalling and homeostasis.

Abstract

The Arabidopsis thaliana transcription factor MYB59 is induced by cadmium (Cd) and plays a key role in the regulation of cell cycle progression and root elongation, but its mechanism of action is poorly understood. We investigated the expression of MYB59 and differences between wild-type plants, the myb59 mutant and MYB59-overexpressing lines (obtained by transformation in the mutant genotype) during plant growth and in response to various forms of stress. We also compared the transcriptomes of wild-type and myb59 mutant plants to determine putative MYB59 targets. The myb59 mutant has longer roots, smaller leaves and smaller cells than wild-type plants and responds differently to stress in germination assay. Transcriptomic analysis revealed the upregulation in the myb59 mutant of multiple genes involved in calcium (Ca) homeostasis and signalling, including those encoding calmodulin-like proteins and Ca transporters. Notably, MYB59 was strongly induced by Ca deficiency, and the myb59 mutant was characterized by higher levels of cytosolic Ca in root cells and showed a modest alteration of Ca transient frequency in guard cells, associated with the absence of Ca-induced stomatal closure. These results indicate that MYB59 negatively regulates Ca homeostasis and signalling during Ca deficiency, thus controlling plant growth and stress responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell 15:63–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Agarwal M, Hao Y, Kapoor A, Dong CH, Fujii H, Zheng X, Zhu JK (2006) A R2R3 type MYB transcription factor is involved in the cold regulation of CBF genes and in acquired freezing tolerance. J Biol Chem 281(49):37636–37645

    Article  CAS  PubMed  Google Scholar 

  • Allen GJ, Chu SP, Schumacher K, Shimazaki CT, Vafeados D, Kemper A, Hawke SD, Tallman G, Tsien RY, Harper JF, Chory J (2000) Alteration of stimulus-specific guard cell calcium oscillations and stomatal closing in Arabidopsis det3 mutant. Science 289:2338–2342

    Article  CAS  PubMed  Google Scholar 

  • Allen GJ, Chu SP, Harrington CL, Schumacher K, Hoffmann T, Tang YY, Grill E, Schroeder JI (2001) A defined range of guard cell calcium oscillation parameters encodes stomatal movements. Nature 411(6841):1053–1057

    Article  CAS  PubMed  Google Scholar 

  • Baliardini C, Meyer CL, Salis P, Saumitou-Laprade P, Verbruggen N (2015) CATION EXCHANGER1 cosegregates with Cadmium tolerance in the metal hyperaccumulator Arabidopsis halleri and plays a role in limiting oxidative stress in Arabidopsis spp. Plant Physiol 169:549–559

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Barbez E, Kubeš M, Rolčík J, Béziat C, Pěnčík A, Wang B, Rosquete MR, Zhu J, Dobrev PI, Lee Y, Zažímalovà E (2012) A novel putative auxin carrier family regulates intracellular auxin homeostasis in plants. Nature 485(7396):119–122

    Article  CAS  PubMed  Google Scholar 

  • Benjamins R, Ampudia CS, Hooykaas PJ, Offringa R (2003) PINOID-mediated signaling involves calcium-binding proteins. Plant Physiol 132(3):1623–1630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng NH, Pittman JK, Barkla BJ, Shigaki T, Hirschi KD (2003) The Arabidopsis cax1 mutant exhibits impaired ion homeostasis, development, and hormonal responses and reveals interplay among vacuolar transporters. Plant Cell 15(2):347–364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chezem WR, Memon A, Li FS, Weng JK, Clay NK (2017) SG2-type R2R3-MYB transcription factor MYB15 controls defense-induced lignification and basal immunity in Arabidopsis. Plant Cell 29(8):1907–1926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cho D, Kim SA, Murata Y, Lee S, Jae SK, Nam HG, Kwak JM (2009) De-regulated expression of the plant glutamate receptor homolog AtGLR3.1 impairs long-term Ca2+-programmed stomatal closure. Plant J 58(3):437–449

    Article  CAS  PubMed  Google Scholar 

  • Cho D, Villiers F, Kroniewicz L, Lee S, Seo YJ, Hirschi KD, Leonhardt N, Kwak JM (2012) Vacuolar CAX1 and CAX3 influence auxin transport in guard cells via regulation of apoplastic pH. Plant Physiol 160(3):1293–1302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  PubMed  Google Scholar 

  • Cominelli E, Galbiati M, Vavasseur A, Conti L, Sala T, Vuylsteke M, Leonhardt N, Dellaporta SL, Tonelli C (2005) A guard-cell-specific MYB transcription factor regulates stomatal movements and plant drought tolerance. Curr Biol 15(13):1196–1200

    Article  CAS  PubMed  Google Scholar 

  • Conn SJ, Gilliham M, Athman A, Schreiber AW, Baumann U, Moller I, Cheng NH, Stancombe MA, Hirschi KD, Webb AA, Burton R (2011) Cell-specific vacuolar calcium storage mediated by CAX1 regulates apoplastic calcium concentration, gas exchange, and plant productivity in Arabidopsis. Plant Cell 23(1):240–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Das M, Harvey I, Chu LL, Sinha M, Pelletier J (2001) Full-length cDNAs: more than just reaching the ends. Physiol Genomics 6:57–80

    Article  CAS  PubMed  Google Scholar 

  • Dovzhenko A, Dal Bosco C, Meurer J, Koop HU (2003) Efficient regeneration from cotyledon protoplasts in Arabidopsis thaliana. Protoplasma 222(1–2):107–111

    Article  CAS  PubMed  Google Scholar 

  • Du L, Poovaiah BW (2004) A novel family of Ca2+/calmodulin-binding proteins involved in transcriptional regulation: interaction with fsh/Ring3 class transcription activators. Plant Mol Biol 54(4):549–569

    Article  CAS  PubMed  Google Scholar 

  • Du H, Zhang L, Liu L, Tang XF, Yang WJ, Wu YM, Huang YB, Tang YX (2009) Biochemical and molecular characterization of plant MYB transcription factor family. Biochemistry 74(1):1–11

    CAS  PubMed  Google Scholar 

  • Dubos C, Stracke R, Grotewold E, Weisshaar B, Martin C, Lepiniec L (2010) MYB transcription factors in Arabidopsis. Trends Plant Sci 15(10):573–581

    Article  CAS  PubMed  Google Scholar 

  • Fusco N, Micheletto L, Dal Corso G, Borgato L, Furini A (2005) Identification of cadmium-regulated genes by cDNA-AFLP in the heavy metal accumulator Brassica juncea L. J Exp Bot 56(421):3017–3027

    Article  CAS  PubMed  Google Scholar 

  • Galbraith DW (2014) Flow cytometry and sorting in Arabidopsis. In: Sanchez-Serrano JJ, Salinas J (eds) Arabidopsis protocols. Humana Press, Totowa, pp 509–537

    Chapter  Google Scholar 

  • Glauser G, Vallat A, Balmer D (2014) Hormone profiling. In: Sanchez-Serrano JJ, Salinas J (eds) Arabidopsis protocols. Humana Press, Totowa, pp 597–608

    Chapter  Google Scholar 

  • Guo L, Yang H, Zhang X, Yang S (2013) Lipid transfer protein 3 as a target of MYB96 mediates freezing and drought stress in Arabidopsis. J Exp Bot 64:1755–1767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hickman R, Van Verk MC, Van Dijken AJ, Mendes MP, Vroegop-Vos IA, Caarls L, Steenbergen M, Van der Nagel I, Wesselink GJ, Jironkin A, Talbot A (2017) Architecture and dynamics of the jasmonic acid gene regulatory network. Plant Cell 29:2086–2105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hinkle PM, Kinsella PA, Osterhoudt KC (1987) Cadmium uptake and toxicity via voltage-sensitive calcium channels. J Biol Chem 262:16333–16337

    CAS  PubMed  Google Scholar 

  • Hoagland DR, Arnon DI (1950) The water-culture method for growing plants without soil. Circular 347. College of Agriculture, University of California, Berkeley

    Google Scholar 

  • Huang LQ, Berkelman T, Franklin AE, Hoffman NE (1993) Characterization of a gene encoding a Ca2+-ATPase-like protein in the plastid envelope. Proc Natl Acad Sci USA 90:10066–10070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang DW, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4(1):44–57

    Article  CAS  Google Scholar 

  • Huang D, Gong X, Liu Y, Zeng G, Lai C, Bashir H, Zhou L, Wang D, Xu P, Cheng M, Wan J (2017) Effects of calcium at toxic concentrations of cadmium in plants. Planta 245:863–873

    Article  CAS  PubMed  Google Scholar 

  • Journot-Catalino N, Somssich IE, Roby D, Kroj T (2006) The transcription factors WRKY11 and WRKY17 act as negative regulators of basal resistance in Arabidopsis thaliana. Plant Cell 18(11):3289–3302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katiyar A, Smita S, Lenka SK, Rajwanshi R, Chinnusamy V, Bansal KC (2012) Genome-wide classification and expression analysis of MYB transcription factor families in rice and Arabidopsis. BMC Genom 13:544

    Article  CAS  Google Scholar 

  • Khokon MA, Salam MA, Jammes F, Ye W, Hossain MA, Uraji M, Nakamura Y, Mori IC, Kwak JM, Murata Y (2015) Two guard cell mitogen-activated protein kinases, MPK9 and MPK12, function in methyl jasmonate-induced stomatal closure in Arabidopsis thaliana. Plant Biol 17:946–952

    Article  CAS  PubMed  Google Scholar 

  • Kim TH, Böhmer M, Hu H, Nishimura N, Schroeder JI (2010) Guard cell signal transduction network: advances in understanding abscisic acid, CO2, and Ca2+ signaling. Annu Rev Plant Biol 61:561–591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krebs M, Held K, Binder A, Hashimoto K, Den Herder G, Parniske M, Kudla J, Schumacher K (2012) FRET-based genetically encoded sensors allow high-resolution live cell imaging of Ca2+ dynamics. Plant J 69:181–192

    Article  CAS  PubMed  Google Scholar 

  • Lai AG, Doherty CJ, Mueller-Roeber B, Kay SA, Schippers JHM, Dijkwel PP (2012) CIRCADIAN CLOCK-ASSOCIATED 1 regulates ROS homeostasis and oxidative stress responses. Proc Natl Acad Sci USA 109(42):17129–17134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Li X, Guo L, Lu F, Feng X, He K, Wei L, Chen Z, Qu LJ, Gu H (2006a) A subgroup of MYB transcription factor genes undergoes highly conserved alternative splicing in Arabidopsis and rice. J Exp Bot 57(6):1263–1273

    Article  CAS  PubMed  Google Scholar 

  • Li J, Yang X, Wang Y, Li X, Gao Z, Pei M, Chen Z, Qu LJ, Gu H (2006b) Two groups of MYB transcription factors share a motif which enhances trans-activation activity. Biochem Biophys Res Commun 341:1155–1163

    Article  CAS  PubMed  Google Scholar 

  • Liang YK, Dubos C, Dodd IC, Holroyd GH, Hetherington AM, Campbell MM (2005) AtMYB61, an R2R3-MYB transcription factor controlling stomatal aperture in Arabidopsis thaliana. Curr Biol 15(13):1201–1206

    Article  CAS  PubMed  Google Scholar 

  • Liao C, Zheng Y, Guo Y (2017) MYB30 transcription factor regulates oxidative and heat stressresponses through ANNEXIN-mediated cytosolic calcium signaling in Arabidopsis. New Phytol 216(1):163–177

    Article  CAS  PubMed  Google Scholar 

  • Lipsick JS (1996) One billion years of Myb. Oncogene 13:223–235

    CAS  PubMed  Google Scholar 

  • Liu L, Zhang J, Adrian J, Gissot L, Coupland G, Yu D, Turck F (2014) Elevated levels of MYB30 in the phloem accelerate flowering in Arabidopsis through the regulation of FLOWERING LOCUS T. PLoS ONE 9(2):e89799

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real time quantitative PCR and the 2–∆∆CT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Mandadi KK, Misra A, Ren S, McKnight TD (2009) BT2, a BTB protein, mediates multiple responses to nutrients, stresses, and hormones in Arabidopsis. Plant Physiol 150(4):1930–1939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McDonald JH (2014) Handbook of biological statistics, 3rd edn. Sparky House Publishing, Baltimore

    Google Scholar 

  • Mehrtens F, Kranz H, Bednarek P, Weisshaar B (2005) The Arabidopsis transcription factor MYB12 is a flavonol-specific regulator of phenylpropanoid biosynthesis. Plant Physiol 138(2):1083–1096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mu RL, Cao YR, Liu YF, Lei G, Zou HF, Liao Y, Wang HW, Zhang WK, Ma B, Du JZ, Yuan M (2009) An R2R3-type transcription factor gene AtMYB59 regulates root growth and cell cycle progression in Arabidopsis. Cell Res 19(11):1291–1304

    Article  CAS  PubMed  Google Scholar 

  • Munemasa S, Hossain MA, Nakamura Y, Mori IC, Murata Y (2011) The Arabidopsis calcium-dependent protein kinase, CPK6, functions as a positive regulator of methyl jasmonate signaling in guard cells. Plant Physiol 155:553–561

    Article  CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nesi N, Jond C, Debeaujon I, Caboche M, Lepiniec L (2001) The Arabidopsis TT2 gene encodes an R2R3 MYB domain protein that acts as a key determinant for proanthocyanidin accumulation in developing seed. Plant Cell 13(9):2099–2114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishida S, Kakei Y, Shimada Y, Fujiwara T (2017) Genome-wide analysis of specific alterations in transcript structure and accumulation caused by nutrient deficiencies in Arabidopsis thaliana. Plant J 91:741–753

    Article  CAS  PubMed  Google Scholar 

  • Novillo F, Alonso JM, Ecker JR, Salinas J (2004) CBF2/DREB1C is a negative regulator of CBF1/DREB1B and CBF3/DREB1A expression and plays a central role in stress tolerance in Arabidopsis. Proc Natl Acad Sci USA 101(11):3985–3990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ogata K, Morikawa S, Nakamura H, Hojo H, Yoshimura S, Zhang R, Aimoto S, Ametani Y, Hirata Z, Sarai A, Ishii S (1995) Comparison of the free and DNA-complexed forms of the DNA-binding domain from c-Myb. Struct Biol 2:309–320

    Article  CAS  Google Scholar 

  • Oh S, Park S, Han KH (2003) Transcriptional regulation of secondary growth in Arabidopsis thaliana. J Exp Bot 54(393):2709–2722

    Article  CAS  PubMed  Google Scholar 

  • Paz-Ares J, Ghosal D, Wienand U, Peterson PA, Saedler H (1987) The regulatory c1 locus of Zea mays encodes a protein with homology to myb proto-oncogene products and with structural similarities to transcriptional activators. EMBO J 6(12):3553–3558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perfus-Barbeoch L, Leonhardt N, Vavaddeur A, Forestier C (2002) Heavy metal toxicity: cadmium permeates through calcium channels and disturbs the plant water status. Plant J 32:539–548

    Article  CAS  PubMed  Google Scholar 

  • Ramakers C, Ruijter JM, Lekanne Deprez RH, Moorman AFM (2003) Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci Lett 339:62–66

    Article  CAS  PubMed  Google Scholar 

  • Reddy VS, Day IS, Thomas T, Reddy AS (2004) KIC, a novel Ca2+ binding protein with one EF-hand motif, interacts with a microtubule motor protein and regulates trichome morphogenesis. Plant Cell 16(1):185–200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ren S, Mandadi KK, Boedeker AL, Rathore KS, McKnight TD (2007) Regulation of telomerase in Arabidopsis by BT2, an apparent target of TELOMERASE ACTIVATOR1. Plant Cell 19(1):23–31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riechmann JL, Heard J, Martin G, Reuber L, Jiang CZ, Keddie J, Adam L, Pineda O, Ratcliffe OJ, Samaha RR, Creelman R (2000) Arabidopsis transcription factors: genome-wide comparative analysis among Eukaryotes. Science 290:2105–2110

    Article  CAS  PubMed  Google Scholar 

  • Rosinski JA, Atchley WR (1998) Molecular evolution of the Myb family of transcription factors: evidence for polyphyletic origin. J Mol Evol 46:74–83

    Article  CAS  PubMed  Google Scholar 

  • Ruta LL, Popa VC, Nicolau I, Danet AF, Iordache V, Neagoe AD, Farcasanu IC (2014) Calcium signaling mediates the response to cadmium toxicity in Saccharomyces cerevisiae cells. FEBS Lett 588(17):3202–3212

    Article  CAS  PubMed  Google Scholar 

  • Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9(7):676–682

    Article  CAS  PubMed  Google Scholar 

  • Scholl RL, May ST, Ware DH (2000) Seed and molecular resources for Arabidopsis. Plant Physiol 124:1477–1480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seo PJ, Lee SB, Suh MC, Park MJ, Go YS, Park CM (2011) The MYB96 transcription factor regulates cuticular wax biosynthesis under drought conditions in Arabidopsis. Plant Cell 23:1138–1152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stracke R, Werber M, Weisshaar B (2001) The R2R3-MYB gene family in Arabidopsis thaliana. Curr Opin Plant Biol 4:447–456

    Article  CAS  PubMed  Google Scholar 

  • Tsai YC, Koo Y, Delk NA, Gehl B, Braam J (2013) Calmodulin-related CML24 interacts with ATG4b and affects autophagy progression in Arabidopsis. Plant J 73(2):325–335

    Article  CAS  PubMed  Google Scholar 

  • Webb AA, Robertson FC (2011) Calcium signals in the control of stomatal movements. In: Luan S (ed) Coding and decoding of calcium signals in plants. Springer, Berlin, pp 63–77

    Chapter  Google Scholar 

  • Weston K (1998) Myb proteins in life, death and differentiation. Curr Opin Genetics Dev 8:76–81

    Article  CAS  Google Scholar 

  • Yanhui C, Xiaoyuan Y, Kun H, Meihua L, Jigang L, Zhaofeng G, Zhiqiang L, Yunfei Z, Xiaoxiao W, Xiaoming Q, Yunping S (2006) The MYB transcription factor superfamily of Arabidopsis: expression analysis and phylogenetic comparison with the rice MYB family. Plant Mol Biol 60(1):107–124

    Article  PubMed  CAS  Google Scholar 

  • Zhou J, Lee C, Zhong R, Ye ZH (2009) MYB58 and MYB63 are transcriptional activators of the lignin biosynthetic pathway during secondary cell wall formation in Arabidopsis. Plant Cell 21(1):248–266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr. Gaétan Glauser of the Neuchâtel Platform of Analytical Chemistry (NPAC, Université de Neuchâtel, Switzerland) for the measurement of IAA content and to Dr. Maria Teresa Scupoli and Dr. Chiara Cavallini of the University Laboratory for Medical Research (LURM, University of Verona, Italy) for the flow cytometry analysis.

Funding

Funding for E.F.’s PhD and research grant were from Italian Ministry of University and Research (MIUR).

Author information

Authors and Affiliations

Authors

Contributions

EF performed most of the experiments and wrote the article with contribution of AF and GD, AC designed and helped with the Cameleon experiments and provided assistance in understanding the resulting data. SZ provided assistance in microarray analysis and interpretation. AF and GD conceived the project and supervised the experiments. EF and GD equally contributed to this work.

Corresponding author

Correspondence to Antonella Furini.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online Resource 1

Semi-quantitative analysis of the expression of the three MYB59 isoforms by real-time RT-PCR under control conditions, Cd treatment, drought, ABA and salt stress. Supplementary material 1 (PDF 272 KB)

Online Resource 2

Comparison of MYB59 expression in wild-type, myb59 mutant and MYB59- overexpressing lines. Supplementary material 2 (PDF 143 KB)

Online Resource 3

Distribution of diameter of the protoplast from leaf 4 and 11 of four-week-old plants in wild-type, myb59 mutant and MYB59-overexpressing plants. Supplementary material 3 (PDF 146 KB)

Online Resource 4

Stress tolerance in wild-type, myb59 mutant and MYB59-overexpressing plants. Supplementary material 4 (PDF 250 KB)

Online Resource 5

Expression of MYB59 isoforms after 6 and 24 hours and 4 days under low-Ca treatment. Supplementary material 5 (PDF 158 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fasani, E., DalCorso, G., Costa, A. et al. The Arabidopsis thaliana transcription factor MYB59 regulates calcium signalling during plant growth and stress response. Plant Mol Biol 99, 517–534 (2019). https://doi.org/10.1007/s11103-019-00833-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-019-00833-x

Keywords

Navigation