Skip to main content

Advertisement

Log in

Integration of transcriptomic and metabolic data reveals hub transcription factors involved in drought stress response in sunflower (Helianthus annuus L.)

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Key message

By integration of transcriptional and metabolic profiles we identified pathways and hubs transcription factors regulated during drought conditions in sunflower, useful for applications in molecular and/or biotechnological breeding.

Abstract

Drought is one of the most important environmental stresses that effects crop productivity in many agricultural regions. Sunflower is tolerant to drought conditions but the mechanisms involved in this tolerance remain unclear at the molecular level. The aim of this study was to characterize and integrate transcriptional and metabolic pathways related to drought stress in sunflower plants, by using a system biology approach. Our results showed a delay in plant senescence with an increase in the expression level of photosynthesis related genes as well as higher levels of sugars, osmoprotectant amino acids and ionic nutrients under drought conditions. In addition, we identified transcription factors that were upregulated during drought conditions and that may act as hubs in the transcriptional network. Many of these transcription factors belong to families implicated in the drought response in model species. The integration of transcriptomic and metabolomic data in this study, together with physiological measurements, has improved our understanding of the biological responses during droughts and contributes to elucidate the molecular mechanisms involved under this environmental condition. These findings will provide useful biotechnological tools to improve stress tolerance while maintaining crop yield under restricted water availability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aguirrezábal L, Orioli G, Hernández LF, Pereyra V, Miravé J (1996) Girasol: Aspectos fisiológicos que determinan el rendimiento. Balcarce, Argentina

  • Allison LA (2000) The role of sigma factors in plastid transcription. Biochimie 82:537–548

    Article  CAS  PubMed  Google Scholar 

  • Alonso R, Salavert F, Garcia-Garcia F, Carbonell-Caballero J, Bleda M, Garcia-Alonso L, Sanchis-Juan A, Perez-Gil D, Marin-Garcia P, Sanchez R, Cubuk C, Hidalgo MR, Amadoz A, Hernansaiz-Ballesteros RD, Alemán A, Tarraga J, Montaner D, Medina I, Dopazo J (2015) Babelomics 5.0: functional interpretation for new generations of genomic data. Nucleic Acids Res 43:W117–W121. doi:10.1093/nar/gkv384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alpert P, Simms EL (2002) The relative advantages of plasticity and fixity in different environments: when is it good for a plant to adjust? Evol Ecol 16:285–297. doi:10.1023/A:1019684612767

    Article  Google Scholar 

  • Amtmann A, Blatt MR (2009) Regulation of macronutrient transport. New Phytol 181:35–52. doi:10.1111/j.1469-8137.2008.02666.x

    Article  CAS  PubMed  Google Scholar 

  • Andrade FH, Gardiol JM (1994) Sequía y producción de los cultivos de maíz, girasol y soja. Boletín técnico 132. EEA INTA Balcarce

  • Andrianasolo F, Casadebaig P, Langlade N, Debaeke P, Maury P (2016) Effects of plant growth stage and leaf aging on the response of transpiration and photosynthesis to water deficit in sunflower. Funct Plant Biol 43:797. doi:10.1071/FP15235

    Article  CAS  Google Scholar 

  • Ariel FD, Manavella P a, Dezar C a, Chan RL (2007) The true story of the HD-Zip family. Trends Plant Sci 12:419–426. doi:10.1016/j.tplants.2007.08.003

    Article  CAS  PubMed  Google Scholar 

  • Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25:25–29. doi:10.1038/75556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ashraf M, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:206–216. doi:10.1016/j.envexpbot.2005.12.006

    Article  CAS  Google Scholar 

  • Ben Rejeb K, Lefebvre-De Vos D, Le Disquet I, Leprince A-S, Bordenave M, Maldiney R, Jdey A, Abdelly C, Savouré A (2015) Hydrogen peroxide produced by NADPH oxidases increases proline accumulation during salt or mannitol stress in Arabidopsis thaliana. New Phytol 208:1138–1148. doi:10.1111/nph.13550

    Article  CAS  PubMed  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B 57:289–300. doi:10.2307/2346101

    Google Scholar 

  • Borsani O, Díaz P, Monza J (1999) Proline is involved in water stress responses of lotus corniculatus nitrogen fixing and nitrate fed plants. J Plant Physiol 155:269–273. doi:10.1016/S0176-1617(99)80018-2

    Article  CAS  Google Scholar 

  • Cabello JV, Arce AL, Chan RL (2012) The homologous HD-Zip I transcription factors HaHB1 and AtHB13 confer cold tolerance via the induction of pathogenesis-related and glucanase proteins. Plant J 69:141–153. doi:10.1111/j.1365-313X.2011.04778.x

    Article  CAS  PubMed  Google Scholar 

  • Cabello JV, Giacomelli JI, Piattoni CV, Iglesias AA, Chan RL (2016) The sunflower transcription factor HaHB11 improves yield, biomass and tolerance to flooding in transgenic Arabidopsis plants. J Biotechnol 222:73–83. doi:10.1016/j.jbiotec.2016.02.015

    Article  CAS  PubMed  Google Scholar 

  • Cattivelli L, Rizza F, Badeck F-W, Mazzucotelli E, Mastrangelo AM, Francia E, Marè C, Tondelli A, Stanca AM (2008) Drought tolerance improvement in crop plants: an integrated view from breeding to genomics. Field Crop Res 105:1–14. doi:10.1016/j.fcr.2007.07.004

    Article  Google Scholar 

  • Cellier F, Conejero G, Breitler JC, Casse F (1998) Molecular and physiological responses to water deficit in drought-tolerant and drought-sensitive lines of sunflower. Accumulation of dehydrin transcripts correlates with tolerance. Plant Physiol 116:319–328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaves MM, Flexas J, Pinheiro C (2009) Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot 103:551–560. doi:10.1093/aob/mcn125

    Article  CAS  PubMed  Google Scholar 

  • Chi W, He B, Mao J, Jiang J, Zhang L (2015) Plastid sigma factors: their individual functions and regulation in transcription. Biochim Biophys Acta 1847:770–778

    Article  CAS  PubMed  Google Scholar 

  • Chimenti CA, Marcantonio M, Hall AJ (2006) Divergent selection for osmotic adjustment results in improved drought tolerance in maize (Zea mays L.) in both early growth and flowering phases. F Crop Res 95:305–315. doi:10.1016/j.fcr.2005.04.003

    Article  Google Scholar 

  • Ciríaco da Silva E, Mansur Custódio Nogueira RJ, Almeida da Silva M, Bandeira de Albuquerque M (2011) Drought stress and plant nutrition. Plant Stress 5:32–41

    Google Scholar 

  • Connor DJ, Jones TR (1985) Response of sunflower to strategies of irrigation II. Morphological and physiological responses to water stress. Field Crop Res 12:91–103

    Article  Google Scholar 

  • Connor DJ, Palta JA, Jones TR (1985) Response of sunflower to strategies of irrigation. III. Crop photosynthesis and transpiration. Field Crop Res 12:281–283

    Article  Google Scholar 

  • Corti Monzón G, Pinedo M, Di Rienzo J, Novo-Uzal E, Pomar F, Lamattina L, de la Canal L (2014) Nitric oxide is required for determining root architecture and lignin composition in sunflower. Supporting evidence from microarray analyses. Nitric Oxide 39:20–28. doi:10.1016/j.niox.2014.04.004

    Article  PubMed  Google Scholar 

  • Couso LL, Fernández RJ (2012) Phenotypic plasticity as an index of drought tolerance in three Patagonian steppe grasses. Ann Bot 110:849–857. doi:10.1093/aob/mcs147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cramer GR, Ergül A, Grimplet J, Tillett RL, Tattersall EAR, Bohlman MC, Vincent D, Sonderegger J, Evans J, Osborne C, Quilici D, Schlauch KA, Schooley DA, Cushman JC (2007) Water and salinity stress in grapevines: early and late changes in transcript and metabolite profiles. Funct Integr Genom 7:111–134. doi:10.1007/s10142-006-0039-y

    Article  CAS  Google Scholar 

  • DaMatta FM, Loos RA, Silva EA, Loureiro ME, Ducatti C (2002) Effects of soil water deficit and nitrogen nutrition on water relations and photosynthesis of pot-grown Coffea canephora Pierre. Trees 16:555–558. doi:10.1007/s00468-002-0205-3

    Article  CAS  Google Scholar 

  • De Witt T, Sih A, Wilson D (1998) Costs and limits of phenotypic plasticity. Trends Ecol Evol 13:77–81

    Article  Google Scholar 

  • Dezar CA, Fedrigo GV, Chan RL (2005a) The promoter of the sunflower HD-Zip protein gene Hahb4 directs tissue-specific expression and is inducible by water stress, high salt concentrations and ABA. Plant Sci 169:447–456

    Article  CAS  Google Scholar 

  • Dezar CA, Gago GM, Gonzalez DH, Chan RL (2005b) Hahb-4, a sunflower homeobox-leucine zipper gene, is a developmental regulator and confers drought tolerance to Arabidopsis thaliana plants. Transgenic Res 14:429–440

    Article  CAS  PubMed  Google Scholar 

  • Díaz P, Betti M, García-Calderón M, Pérez-Delgado CM, Signorelli S, Borsani O, Márquez AJ, Monza J (2014) Amino acids and drought stress in lotus: use of transcriptomics and plastidic glutamine synthetase mutants for new insights in proline metabolism. In: Anjum NA, Gill SS, Gill R (eds) Plant adaptation to environmental change: significance of amino acids and their derivatives. CABI International, Boston

    Google Scholar 

  • Dubois M, Gilles K, Hamilton J, Rebus P, Smith F (1956) Colorimetric method for the determination of sugars and related substances. Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  • Dumas A (1826) Annales de chimie 33:342

  • El-Maarouf-Bouteau H, Sajjad Y, Bazin J, Langlade N, Cristescu SM, Balzergue S, Baudouin E, Bailly C (2015) Reactive oxygen species, abscisic acid and ethylene interact to regulate sunflower seed germination. Plant Cell Environ 38:364–374. doi:10.1111/pce.12371

    Article  CAS  PubMed  Google Scholar 

  • Farooq M, Hussain M, Wahid A, Siddique KHM (2012) Drought Stress in plants: an overview. In: Aroca R (ed) Plant responses to drought stress—from morphological to molecular features. Springer, Berlin, pp 1–33

  • Fernandez P, Rienzo J Di, Fernandez L, Hopp HE, Paniego N, Heinz RA (2008) Transcriptomic identification of candidate genes involved in sunflower responses to chilling and salt stresses based on cDNA microarray analysis. BMC Plant Biol 8:1–18. doi:10.1186/1471-2229-8-11

    Article  Google Scholar 

  • Fernandez P, Di Rienzo JA, Moschen S, Dosio GA, Aguirrezabal LA, Hopp HE, Paniego N, Heinz RA (2011) Comparison of predictive methods and biological validation for qPCR reference genes in sunflower leaf senescence transcript analysis. Plant Cell Rep 30:63–74. doi:10.1007/s00299-010-0944-3

    Article  CAS  PubMed  Google Scholar 

  • Fernandez P, Soria M, Blesa D, DiRienzo J, Moschen S, Rivarola M, Clavijo BJ, Gonzalez S, Peluffo L, Príncipi D, Dosio G, Aguirrezabal L, García-García F, Conesa A, Hopp E, Dopazo J, Heinz RA, Paniego N (2012) Development, characterization and experimental validation of a cultivated sunflower (Helianthus annuus L.) gene expression oligonucleotide microarray. PLoS ONE 7:1–11. doi:10.1371/journal.pone.0045899

    Article  Google Scholar 

  • Gago GM, Almoguera C, Jordano J, Gonzalez DH, Chan RL (2002) Hahb-4, a homeobox-leucine zipper gene potentially involved in abscisic acid-dependent responses to water stress in sunflower. Plant Cell Environ 25:633–640. doi:10.1046/j.1365-3040.2002.00853.x

    Article  CAS  Google Scholar 

  • Gershenzon J, Dudareva N (2007) The function of terpene natural products in the natural world. Nat Chem Biol 3:408–414. doi:10.1038/nchembio.2007.5

    Article  CAS  PubMed  Google Scholar 

  • Giordani T, Natali L, D’Ercole A, Pugliesi C, Fambrini M, Vernieri P, Vitagliano C, Cavallini A (1999) Expression of a dehydrin gene during embryo development and drought stress in ABA-deficient mutants of sunflower (Helianthus annuus L.). Plant Mol Biol 39:739–748

    Article  CAS  PubMed  Google Scholar 

  • Hanson AD, Scott NA (1980) Betaine synthesis from radioactive precursors in attached, water-stressed barley leaves. Plant Physiol 66:342–348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang L, Ye Z, Bell RW, Dell B (2005) Boron nutrition and chilling tolerance of warm climate crop species. Ann Bot 96:755–767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Inskeep WP, Bloom PR (1985) Extinction coefficients of chlorophyll a and b in N, N-dimethylformamide and 80% acetone. Plant Physiol 77:483–485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jahantigh O, Najafi F, Badi HN, Khavari-Nejad RA, Sanjarian F (2016) Changes in antioxidant enzymes activities and proline, total phenol and anthocyanine contents in Hyssopus officinalis L. plants under salt stress. Acta Biol Hung 67:195–204. doi:10.1556/018.67.2016.2.7

    Article  CAS  PubMed  Google Scholar 

  • Kiani SP, Talia P, Maury P, Grieu P, Heinz R, Perrault a., Nishinakamasu V, Hopp E, Gentzbittel L, Paniego N, Sarrafi a (2007a) Genetic analysis of plant water status and osmotic adjustment in recombinant inbred lines of sunflower under two water treatments. Plant Sci 172:773–787. doi:10.1016/j.plantsci.2006.12.007

    Article  CAS  Google Scholar 

  • Kiani SP, Grieu P, Maury P, Hewezi T, Gentzbittel L, Sarrafi A, Kiani PS (2007b) Genetic variability for physiological traits under drought conditions and differential expression of water stress-associated genes in sunflower (Helianthus annuus L.). Theor Appl Genet 114:193–207. doi:10.1007/s00122-006-0419-7

    Article  CAS  Google Scholar 

  • Kiniry JR, Blanchet R, Williams JR, Texier V, Jones K, Cabelguenne M (1992) Sunflower simulation using the EPIC and ALMANAC models. Field Crop Res 30:403–423

    Article  Google Scholar 

  • Kratsch HA, Wise RR (2000) The ultrastructure of chilling stress. Plant Cell Environ 23:337–350

    Article  CAS  Google Scholar 

  • Langfelder P, Horvath S (2008) WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9:559. doi:10.1186/1471-2105-9-559

    Article  PubMed  PubMed Central  Google Scholar 

  • Lohse M, Nagel A, Herter T, May P, Schroda M, Zrenner R, Tohge T, Fernie AR, Stitt M, Usadel B (2014) Mercator: a fast and simple web server for genome scale functional annotation of plant sequence data. Plant Cell Environ 37:1250–1258. doi:10.1111/pce.12231

    Article  CAS  PubMed  Google Scholar 

  • Luedemann A, Strassburg K, Erban A, Kopka J (2008) TagFinder for the quantitative analysis of gas chromatography–mass spectrometry (GC-MS)-based metabolite profiling experiments. Bioinformatics 24:732–737. doi:10.1093/bioinformatics/btn023

    Article  CAS  PubMed  Google Scholar 

  • Maas EV, Hoffman GJ (1977) Crop salt tolerance, current assessment. J Irrig Drain Div ASCE 103:115–134

    Google Scholar 

  • Mahouachi J, Socorro AR, Talon M (2006) Responses of papaya seedlings (Carica papaya L.) to water stress and re-hydration: growth, photosynthesis and mineral nutrient imbalance. Plant Soil 281:137–146. doi:10.1007/s11104-005-3935-3

    Article  CAS  Google Scholar 

  • Manavella PA, Arce AL, Dezar CA, Bitton F, Renou J-PP, Crespi M, Chan RL (2006) Cross-talk between ethylene and drought signalling pathways is mediated by the sunflower Hahb-4 transcription factor. Plant J 48:125–137

    Article  CAS  PubMed  Google Scholar 

  • Manavella PA, Dezar CA, Bonaventure G, Baldwin IT, Chan RL (2008a) HAHB4, a sunflower HD-Zip protein, integrates signals from the jasmonic acid and ethylene pathways during wounding and biotic stress responses. Plant J 56:376–388. doi:10.1111/j.1365-313X.2008.03604.x

    Article  CAS  PubMed  Google Scholar 

  • Manavella PA, Dezar C, Ariel FD, Drincovich MF, Chan RL (2008b) The sunflower HD-Zip transcription factor HAHB4 is up-regulated in darkness, reducing the transcription of photosynthesis-related genes. J Exp Bot 59:3143–3155

    Article  CAS  PubMed  Google Scholar 

  • Masclaux-Daubresse C, Valadier M-H, Carrayol E, Reisdorf-Cren M, Hirel B (2002) Diurnal changes in the expressionof glutamate dehydrogenase and nitrate reductase are involved in the C/N balance of tobacco source leaves. Plant Cell Environ 25:1451–1462. doi:10.1046/j.1365-3040.2002.00925.x

    Article  CAS  Google Scholar 

  • Mir RR, Zaman-Allah M, Sreenivasulu N, Trethowan R, Varshney RK (2012) Integrated genomics, physiology and breeding approaches for improving drought tolerance in crops. Theor Appl Genet 125:625–645. doi:10.1007/s00122-012-1904-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Montaner D, Dopazo J (2010) Multidimensional gene set analysis of genomic data. PLoS ONE 5:e10348. doi:10.1371/journal.pone.0010348

    Article  PubMed  PubMed Central  Google Scholar 

  • Moschen S, Bengoa Luoni S, Paniego NB, Hopp HE, Dosio GAA, Fernandez P, Heinz RA (2014a) Identification of candidate genes associated with leaf senescence in cultivated sunflower (Helianthus annuus L.). PLoS ONE 9:e104379. doi:10.1371/journal.pone.0104379

    Article  PubMed  PubMed Central  Google Scholar 

  • Moschen S, Radonic LM, Ehrenbolger GF, Fernández P, Lía V, Paniego NB, López Bilbao M, Heinz RA, Hopp HE (2014b) Functional genomics and transgenesis applied to sunflower breeding. In: Arribas JI (ed) Sunflowers: growth and development, environmental influences and pests/diseases. Nova Science Publishers, Hauppauge, pp 131–164

  • Moschen S, Bengoa Luoni S, Di Rienzo J, Caro M, Tohge T, Watanabe M, Hollmann J, González S, Rivarola M, García-García F, Dopazo J, Hopp HE, Hoefgen R, Fernie A, Paniego N, Fernández P, Heinz R (2016a) Integrating transcriptomic and metabolomic analysis to understand natural leaf senescence in sunflower. Plant Biotechnol J 14:719–734. doi:10.1111/pbi.12422

    Article  CAS  PubMed  Google Scholar 

  • Moschen S, Higgins J, Di Rienzo JA, Heinz RA, Paniego N, Fernandez P (2016b) Network and biosignature analysis for the integration of transcriptomic and metabolomic data to characterize leaf senescence process in sunflower. BMC Bioinformatics 17:174. doi:10.1186/s12859-016-1045-2

    Article  PubMed  PubMed Central  Google Scholar 

  • Nagashima A, Hanaoka M, Shikanai T, Fujiwara M, Kanamaru K, Takahashi H, Tanaka K (2004) The multiple-stress responsive plastid sigma factor, SIG5, directs activation of the psbD blue light-responsive promoter (BLRP) in Arabidopsis thaliana. Plant Cell Physiol 45:357–368. doi:10.1093/PCP/PCH050

    Article  CAS  PubMed  Google Scholar 

  • Nakabayashi R, Mori T, Saito K (2014a) Alternation of flavonoid accumulation under drought stress in Arabidopsis thaliana. Plant Signal Behav 9:e29518

    Article  PubMed Central  Google Scholar 

  • Nakabayashi R, Yonekura-Sakakibara K, Urano K, Suzuki M, Yamada Y, Nishizawa T, Matsuda F, Kojima M, Sakakibara H, Shinozaki K, Michael AJ, Tohge T, Yamazaki M, Saito K (2014b) Enhancement of oxidative and drought tolerance in Arabidopsis by overaccumulation of antioxidant flavonoids. Plant J 77:367–379. doi:10.1111/tpj.12388

    Article  CAS  PubMed  Google Scholar 

  • Ouvrard O, Cellier F, Ferrare K, Tousch D, Lamaze T, Dupuis JM, Casse-Delbart F (1996) Identification and expression of water stress- and abscisic acid-regulated genes in a drought-tolerant sunflower genotype. Plant Mol Biol 31:819–829

    Article  CAS  PubMed  Google Scholar 

  • Palmer-Young EC, Veit D, Gershenzon J, Schuman MC (2015) The sesquiterpenes(E)-ß-farnesene and (E)-α-bergamotene quench ozone but fail to protect the wild tobacco Nicotiana attenuata from ozone, UVB, and drought stresses. PLoS ONE 10:e0127296. doi:10.1371/journal.pone.0127296

    Article  PubMed  PubMed Central  Google Scholar 

  • Peluffo L, Lia V, Troglia C, Maringolo C, Norma P, Escande A, Esteban Hopp H, Lytovchenko A, Fernie AR, Heinz R, Carrari F (2010) Metabolic profiles of sunflower genotypes with contrasting response to Sclerotinia sclerotiorum infection. Phytochemistry 71:70–80. doi:10.1016/j.phytochem.2009.09.018

    Article  CAS  PubMed  Google Scholar 

  • Pereyra-Irujo GA, Velázquez L, Granier C, Aguirrezábal LAN (2007) A method for drought tolerance screening in sunflower. Plant Breed 126:445–448. doi:10.1111/j.1439-0523.2007.01375.x

    Article  Google Scholar 

  • Pérez-Rodríguez P, Riaño-Pachón DM, Corrêa LGG, Rensing SA, Kersten B, Mueller-Roeber B (2010) PlnTFDB: updated content and new features of the plant transcription factor database. Nucleic Acids Res 38:D822–D827. doi:10.1093/nar/gkp805

    Article  PubMed  Google Scholar 

  • Pinheiro J, Bates D, DebRoy S, Sarkar D (2012) nlme: linear and nonlinear mixed effects models. R package

  • Planchet E, Verdu I, Delahaie J, Cukier C, Girard C, Morère-Le Paven M-C, Limami AM (2014) Abscisic acid-induced nitric oxide and proline accumulation in independent pathways under water-deficit stress during seedling establishment in Medicago truncatula. J Exp Bot 65:2161–2170. doi:10.1093/jxb/eru088

    Article  CAS  PubMed  Google Scholar 

  • R Core Team (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing. ISBN 3-900051-07-0

  • Raineri J, Ribichich KF, Chan RL (2015) The sunflower transcription factor HaWRKY76 confers drought and flood tolerance to Arabidopsis thaliana plants without yield penalty. Plant Cell Rep 34:2065–2080. doi:10.1007/s00299-015-1852-3

    Article  CAS  PubMed  Google Scholar 

  • Roche J, Hewezi T, Bouniols A, Gentzbittel L (2007) Transcriptional profiles of primary metabolism and signal transduction-related genes in response to water stress in field-grown sunflower genotypes using a thematic cDNA microarray. Planta 226:601–617. doi:10.1007/s00425-007-0508-0

    Article  CAS  PubMed  Google Scholar 

  • Roessner-Tunali U, Hegemann B, Lytovchenko A, Carrari F, Bruedigam C, Granot D, Fernie AR (2003) Metabolic profiling of transgenic tomato plants overexpressing hexokinase reveals that the influence of hexose phosphorylation diminishes during fruit development. Plant Physiol 133:84–99. doi:10.1104/pp.103.023572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rousseaux MC. C, Hall AJ, Sanchez RA (1996) Far-red enrichment and photosynthetically active radiation level influence leaf senescence in field-grown sunflower. Physiol Plant 96:217–224

    Article  CAS  Google Scholar 

  • Rozen S, Skaletsky HJ (2000) Primer3 on the WWW for general users and for biologist programmers. Bioinform Methods Protoc 132:365–386

    Article  CAS  Google Scholar 

  • Ruiz-Lozano JM, Azcón R (1996) Mycorrhizal colonization and drought stress as factors affecting nitrate reductase activity in lettuce plants. Agric Ecosyst Environ 60:175–181. doi:10.1016/S0167-8809(96)01074-2

    Article  CAS  Google Scholar 

  • Sadras VO, Whitfi eld DM, Connor DJ (1991) Regulation of evapotranspiration and its partitioning between transpiration and soil evaporation by sunflower crops. A comparison between hybrids of different stature. Field Crop Res 28:17–37

    Article  Google Scholar 

  • Saito K, Yonekura-Sakakibara K, Nakabayashi R, Higashi Y, Yamazaki M, Tohge T, Fernie AR (2013) The flavonoid biosynthetic pathway in Arabidopsis: structural and genetic diversity. Plant Physiol Biochem 72:21–34. doi:10.1016/j.plaphy.2013.02.001

    Article  CAS  PubMed  Google Scholar 

  • Sartor MA, Leikauf GD, Medvedovic M (2009) LRpath: a logistic regression approach for identifying enriched biological groups in gene expression data. Bioinformatics 25:211–217. doi:10.1093/bioinformatics/btn592

    Article  CAS  PubMed  Google Scholar 

  • Schaefer RJ, Michno J-M, Myers CL (2016) Unraveling gene function in agricultural species using gene co-expression networks. Biochim Biophys Acta-Gene Regul Mech. doi:10.1016/j.bbagrm.2016.07.016

    Google Scholar 

  • Schmidhuber J, Tubiello FN (2007) Global food security under climate change. Proc Natl Acad Sci USA 104:19703–19708. doi:10.1073/pnas.0701976104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504. doi:10.1101/gr.1239303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharkey TD (2001) Isoprene increases thermotolerance of fosmidomycin-fed leaves. Plant Physiol 125:2001–2006. doi:10.1104/pp.125.4.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharkey TD, Wiberley AE, Donohue AR (2008) Isoprene emission from plants: why and how. Ann Bot 101:5–18. doi:10.1093/aob/mcm240

    Article  CAS  PubMed  Google Scholar 

  • Skopelitis DS, Paranychianakis NV, Paschalidis KA, Pliakonis ED, Delis ID, Yakoumakis DI, Kouvarakis A, Papadakis AK, Stephanou EG, Roubelakis-Angelakis KA (2006) Abiotic stress generates ROS that signal expression of anionic glutamate dehydrogenases to form glutamate for proline synthesis in tobacco and grapevine. Plant Cell 18:2767–2781. doi:10.1105/tpc.105.038323

  • Smyth G (2005) Limma: linear models for microarray data. In: Gentleman R, Carey V, Dudoit S, Irizarry R, Huber W (eds) Bioinformatics and computational biology solutions using R and bioconductor. Springer, New York, pp 397–420

    Chapter  Google Scholar 

  • Sperdouli I, Moustakas M (2012) Interaction of proline, sugars, and anthocyanins during photosynthetic acclimation of Arabidopsis thaliana to drought stress. J Plant Physiol 169:577–585. doi:10.1016/j.jplph.2011.12.015

    Article  CAS  PubMed  Google Scholar 

  • Tardieu F, Tuberosa R (2010) Dissection and modelling of abiotic stress tolerance in plants. Curr Opin Plant Biol 13:206–212. doi:10.1016/j.pbi.2009.12.012

    Article  PubMed  Google Scholar 

  • Thimm O, Blasing O, Gibon Y, Nagel A, Meyer S, Kruger P, Selbig J, Muller LA, Rhee SY, Stitt M, Bläsing O, Krüger P, Müller L a (2004) MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J 37:914–939. doi:10.1111/j.1365-313X.2004.02016.x

    Article  CAS  PubMed  Google Scholar 

  • Thomas WTB (2015) Drought-resistant cereals: impact on water sustainability and nutritional quality. Proc Nutr Soc 74:191–197. doi:10.1017/S0029665115000026

    Article  CAS  PubMed  Google Scholar 

  • Tran L-SP, Nakashima K, Sakuma Y, Osakabe Y, Qin F, Simpson SD, Maruyama K, Fujita Y, Shinozaki K, Yamaguchi-Shinozaki K (2006) Co-expression of the stress-inducible zinc finger homeodomain ZFHD1 and NAC transcription factors enhances expression of the ERD1 gene in Arabidopsis. Plant J 49:46–63. doi:10.1111/j.1365-313X.2006.02932.x

    Article  Google Scholar 

  • Utrillas MJ, Alegre L, Simon E (1995) Seasonal changes in production and nutrient content of Cynodon dactylon (L.) Pers. subjected to water deficits. Plant Soil 175:153–157. doi:10.1007/BF02413021

    Article  CAS  Google Scholar 

  • van Kleunen M, Fischer M (2005) Constraints on the evolution of adaptive phenotypic plasticity in plants. New Phytol 166:49–60. doi:10.1111/j.1469-8137.2004.01296.x

    Article  PubMed  Google Scholar 

  • Vickers CE, Gershenzon J, Lerdau MT, Loreto F (2009) A unified mechanism of action for volatile isoprenoids in plant abiotic stress. Nat Chem Biol 5:283–291. doi:10.1038/nchembio.158

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Wu P, Li Y, Hou X (2016) Genome-wide analysis and expression patterns of ZF-HD transcription factors under different developmental tissues and abiotic stresses in Chinese cabbage. Mol Genet Genom 291:1451–1464. doi:10.1007/s00438-015-1136-1

    Article  CAS  Google Scholar 

  • Yaish MW (2015) Proline accumulation is a general response to abiotic stress in the date palm tree (Phoenix dactylifera L.). Genet Mol Res 14:9943–9950. doi:10.4238/2015.August.19.30

    Article  CAS  PubMed  Google Scholar 

  • Yamada M, Morishita H, Urano K, Shiozaki N, Yamaguchi-Shinozaki K, Shinozaki K, Yoshiba Y (2005) Effects of free proline accumulation in petunias under drought stress. J Exp Bot 56:1975–1981. doi:10.1093/jxb/eri195

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Guillermo Dosio and Luis Aguirrezabal for scientific advice and Luis Mendez, Carlos Antonelli, Silvio Giuliano, for support in field experiments at INTA Balcarce and Claudio Villan for technical support. Dr. Julia Sabio y Garcia is gratefully acknowledged for critical reading of this manuscript. This study was funded by INTA PE 1131022, 1131043; ANPCyT Préstamo BID PICT 2012 0390, PICT 2011 1365, PICT 2014 0701 and PIP CONICET 11220120100262CO; Agencia Española de Cooperación Internacional y Desarrollo (D/031348/10;A1/041041/11); Marie Curie IRSES Project DEANN (PIRSES-GA-2013-612583).

Author information

Authors and Affiliations

Authors

Contributions

SM, HEH, NP, PF, RAH conceived and designed the experiments. JADR performed statistical analysis. JH, SM analyzed data integration by WGCNA. SM, TT, MW, RH, ARF designed and performed metabolic analysis. SG, MR carry out bioinformatics analysis of microarrays. FGG, JD execute functional analysis of data. All authors contributed to the work by the interpretation, discussion of the data and critically revised the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ruth A. Heinz.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1: Microarray validation by qPCR (PNG 23 KB)

11103_2017_625_MOESM2_ESM.png

Fig. S2: Enriched GO categories under drought condition. a Biological Process downregulated at T1; b Biological Process downregulated at T2; c Biological Process downregulated at T3; d Biological Process upregulated at T1; e Biological Process upregulated at T2; f Biological Process upregulated at T3 (PNG 1172 KB)

Supplementary material 3 (PNG 1311 KB)

Supplementary material 4 (PNG 1439 KB)

Supplementary material 5 (PNG 437 KB)

Supplementary material 6 (PNG 678 KB)

Supplementary material 7 (PNG 504 KB)

Fig. S3: WGCNA gene module correlated with metabolite levels (PDF 80 KB)

11103_2017_625_MOESM9_ESM.xlsx

Table S1: List of genes up- and downregulated (41 and 101 genes respectively) at the three sampling points showed in the Venn diagram (Fig. 3) (XLSX 38 KB)

11103_2017_625_MOESM10_ESM.xlsx

Table S2: Top list of up- and downregulated genes with a fold change higher or lower than 4 in at least one of the evaluated conditions (XLSX 167 KB)

11103_2017_625_MOESM11_ESM.xlsx

Table S3: Transcription factors differentially expressed under drought conditions with a fold change higher or lower than 4 in at least one of the three sampling times (XLSX 12 KB)

11103_2017_625_MOESM12_ESM.xlsx

Table S4: Number of genes per module and distribution of the 93 upregulated and 95 downregulated TFs under drought in these modules (XLSX 42 KB)

11103_2017_625_MOESM13_ESM.xlsx

Table S5: Expression profiles of TF families associated to leaf senescence under natural and drought condition (XLSX 16 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moschen, S., Di Rienzo, J.A., Higgins, J. et al. Integration of transcriptomic and metabolic data reveals hub transcription factors involved in drought stress response in sunflower (Helianthus annuus L.). Plant Mol Biol 94, 549–564 (2017). https://doi.org/10.1007/s11103-017-0625-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-017-0625-5

Keywords

Navigation