Skip to main content
Log in

Identification of alternatively spliced transcripts of rice phytochelatin synthase 2 gene OsPCS2 involved in mitigation of cadmium and arsenic stresses

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Key message

The OsPCS2 exhibits root- and shoot-specific differential ratios of alternatively spliced transcripts in indica rice under Cd stress, and plays role in Cd and As stress tolerance and accumulation.

Abstract

Enzymatic activity of phytochelatin synthase (PCS) in plant produces phytochelatins, which help in sequestration of heavy metal(loid)s inside the cell vacuole to alleviate toxicity. Here we report that among the two PCS genes—OsPCS1 and OsPCS2 in indica rice (Oryza sativa) cultivar, the OsPCS2 produces an alternatively spliced OsPCS2b transcript that bears the unusual premature termination codon besides the canonically spliced OsPCS2a transcript. Root- and shoot-specific differential ratios of alternatively spliced OsPCS2a and OsPCS2b transcript expressions were observed under cadmium stress. Saccharomyces cerevisiae cells transformed with OsPCS2a exhibited increased cadmium (Cd) and arsenic (As) tolerance and accumulation, unlike the OsPCS2b transformed yeast cells. An intron-containing hairpin RNA-mediated gene silencing was carried out in endosperm-specific manner for efficient down-regulation of OsPCS genes in rice grains. Analysis of the transgenic rice lines grown under metal(loid) stress revealed almost complete absence of both OsPCS1 and OsPCS2 transcripts in the developing seeds coupled with the significant reduction in the content of Cd (~51%) and As (~35%) in grains compared with the non-transgenic plant. Taken together, the findings indicate towards a crucial role played by the tissue-specific alternative splicing and relative abundance of the OsPCS2 gene during heavy metal(loid) stress mitigation in rice plant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bhattacharya S, Chattopadhyaya B, Koduru L, Das N, Maiti MK (2014) Bran-specific expression of Brassica juncea microsomal ω-3 desaturase gene (BjFad3) improves the nutritionally desirable ω-6:ω-3 fatty acid ratio in rice bran oil. Plant Cell Tissue Organ 119(1):117–129

    Article  CAS  Google Scholar 

  • Bhattacharya S, Sinha S, Das N, Maiti MK (2015) Increasing the stearate content in seed oil of Brassica juncea by heterologous expression of MlFatB affects lipid content and germination frequency of transgenic seeds. Plant Physiol Biochem 96:345–355

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharya S, Das N, Maiti MK (2016) Cumulative effect of heterologous AtWri1 gene expression and endogenous BjAGPase gene silencing increases seed lipid content in Indian mustard Brassica juncea. Plant Physiol Biochem 107:204–213

    Article  CAS  PubMed  Google Scholar 

  • Black DL (2003) Mechanisms of alternative pre-messenger RNA splicing. Annu Rev Biochem 72:291–336

    Article  CAS  PubMed  Google Scholar 

  • Boc A, Diallo AB, Makarenkov V (2012) T-REX: a web server for inferring, validating and visualizing phylogenetic trees and networks. Nucleic Acids Res 40:W573–W579

    Article  PubMed  PubMed Central  Google Scholar 

  • Brunetti P, Zanella L, Proia A, De Paolis A, Falasca G, Altamura MM, Sanita` di Toppi L, Costantino P, Cardarelli M (2011) Cadmium tolerance and phytochelatin content of Arabidopsis seedlings over-expressing the phytochelatin synthase gene AtPCS1. J Exp Bot 62:5509–5519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buratti E, Baralle FE (2004) Influence of RNA secondary structure on the pre-mRNA splicing process. Mol Cell Biol 24:10505–10514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cazalé AC, Clemens S (2001) Arabidopsis thaliana expresses a second functional phytochelatin synthase. FEBS Lett 507:215–219

    Article  PubMed  Google Scholar 

  • Cheng F, Zhao N, Xu H, Li Y, Zhang W, Zhu Z, Chen M (2006) Cadmium and lead contamination in japonica rice grains and its variation among the different locations in southeast China. Sci Total Environ 359:156–166

    Article  CAS  PubMed  Google Scholar 

  • Clemens S, Kim EJ, Neumann D, Schroeder JI (1999) Tolerance to toxic metals by a gene family of phytochelatin synthases from plants and yeast. EMBO J 18:3325–3333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cobbett CS (2000) Phytochelatins and their role in heavy metal detoxification. Plant Physiol 123:825–833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cobbett CS, Goldsbrough P (2002) Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Physiol Plant Mol Biol 53:159–182

    Article  CAS  Google Scholar 

  • Das N, Bhattacharya S, Maiti MK (2016) Enhanced cadmium accumulation and tolerance in transgenic tobacco overexpressing rice metal tolerance protein gene OsMTP1 is promising for phytoremediation. Plant Physiol Biochem 105:297–309

    Article  CAS  PubMed  Google Scholar 

  • Deshler JO, Rossi JJ (1991) Unexpected point mutations activate cryptic 3′ splice sites by perturbing a natural secondary structure within a yeast intron. Genes Dev 5:1252–1263

    Article  CAS  PubMed  Google Scholar 

  • Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • Ellis JD, Barrios-Rodiles M, Colak R, Irimia M, Kim T, Calarco JA, Wang X, Pan Q, O’Hanlon D, Kim PM, Wrana JL, Blencowe BJ (2012) Tissue-specific alternative splicing remodels protein-protein interaction networks. Mol Cell 46:884–892

    Article  CAS  PubMed  Google Scholar 

  • Filichkin SA, Mockler TC (2012) Unproductive alternative splicing and nonsense mRNAs: a widespread phenomenon among plant circadian clock genes. Biol Direct 7:20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Filichkin SA, Priest HD, Givan SA, Shen R, Bryant DW, Fox SE, Wong WK, Mockler TC (2010) Genome-wide mapping of alternative splicing in Arabidopsis thaliana. Genome Res 20:45–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fits VL, Deakin EA, Hoge JH, Memelink J (2000) The ternary transformation system: constitutive virG on a compatible plasmid dramatically increases Agrobacterium-mediated plant transformation. Plant Mol Biol 43:495–502

    Article  PubMed  Google Scholar 

  • Gasic K, Korban SS (2007) Expression of Arabidopsis phytochelatin synthase in Indian mustard (Brassica juncea) plants enhances tolerance for Cd and Zn. Planta 225:1277–1285

    Article  CAS  PubMed  Google Scholar 

  • Gisbert C, Ros R, Haro AD, Walker DJ, Bernal MP, Serrano R, Navarro-Aviñó J (2003) A plant genetically modified that accumulates Pb is especially promising for phytoremediation. Biochem Biophys Res Commun 303:440–445

    Article  CAS  PubMed  Google Scholar 

  • Goguel V, Wang Y, Rosbash M (1993) Short artificial hairpins sequester splicing signals and inhibit yeast pre-mRNA splicing. Mol Cell Biol 13:6841–6848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Graveley BR (2001) Alternative splicing: increasing diversity in the proteomic world. Trends Genet 17:100–107

    Article  CAS  PubMed  Google Scholar 

  • Grill E, Winnacker EL, Zenk MH (1987) Phytochelatins, a class of heavy-metal-binding peptides from plants, are functionally analogous to metallothioneins. Proc Natl Acad Sci USA 84(2):439–443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grill E, Löffler S, Winnacker EL, Zenk MH (1989) Phytochelatins, the heavy-metal binding peptides of plants, are synthesized from glutathione by a specific γ-glutamylcysteine dipeptidyl transpeptidase (phytochelatin synthase). Proc Natl Acad Sci USA 86:6838–6842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ha SB, Smith AP, Howden R, Dietrich WM, Bugg S, O’Connell MJ, Goldsbrough PB, Cobbett CS (1999) Phytochelatin synthase genes from Arabidopsis and the yeast, Schizosaccharomyces pombe. Plant Cell 11:1153–1164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herawati N, Suzuki S, Hayashi K, Rivai IF, Koyama H (2000) Cadmium, copper, and zinc levels in rice and soil of Japan, Indonesia, and China by soil type. Bull Environ Contam Toxicol 64:33–39

    Article  CAS  PubMed  Google Scholar 

  • Hori K, Watanabe Y (2007) Context analysis of termination codons in mRNA that are recognized by plant NMD. Plant Cell Physiol 48:1072–1078

    Article  CAS  PubMed  Google Scholar 

  • Howden R, Goldsbrough PB, Andersen CR, Cobbett CS (1995) Cadmium-sensitive cad1 mutants of Arabidopsis thaliana are phytochelatin deficient. Plant Physiol 107:1059–1066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johanning J, Strasdeit H (1998) A coordination-chemical basis for the biological function of the phytochelatins. Angew Chem Int Ed 37(18):2464–2466

    Article  CAS  Google Scholar 

  • Kühnlenz T, Schmidt H, Uraguchi S, Clemens S (2014) Arabidopsis thaliana phytochelatin synthase 2 is constitutively active in vivo and can rescue the growth defect of the AtPCS1-deficient cad1-3 mutant on Cd-contaminated soil. J Exp Bot 65(15):4241–4253

    Article  PubMed  PubMed Central  Google Scholar 

  • Lareau LF, Green RE, Bhatnagar RS, Brenner SE (2004) The evolving roles of alternative splicing. Curr Opin Struct Biol 14:273–282

    Article  CAS  PubMed  Google Scholar 

  • Lee S, Moon JS, Ko T, Petros D, Golsbrough PB, Korban SS (2003) Overexpression of Arabidopsis phytochelatin synthase paradoxically leads to hypersensitivity to cadmium stress. Plant Physiol 131:656–663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Dhankher OM, Carreira L, Lee D, Chen A, Schroeder JI, Balish RS, Meagher RB (2004) Overexpression of phytochelatin synthase in Arabidopsis leads to enhanced arsenic tolerance and cadmium hypersensitivity. Plant Cell Physiol 45:1787–1797

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Dankher OP, Carreira L, Smith AP, Meagher RB (2006) The shoot-specific expression of gamma-glutamylcysteine synthetase directs the long-distance transport of thiol-peptides to roots conferring tolerance to mercury and arsenic. Plant Physiol 141:288–298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li JC, Guo JB, Xu WZ, Ma M (2007) RNA interference-mediated silencing of phytochelatin synthase gene reduce cadmium accumulation in rice seeds. J Integr Plant Biol 49:1032–1037

    Article  CAS  Google Scholar 

  • Li AM, Yu BY, Chen FH, Gan HY, Yuan JG, Qiu R, Huang JC, Yang ZY, Xu ZF (2009) Characterization of the Sesbania rostrata Phytochelatin Synthase Gene: Alternative Splicing and Function of Four Isoforms. Int J Mol Sci 10:3269–3282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lombi E, Scheckel KG, Pallon J, Carey AM, Zhu YG, Meharg AA (2009) Speciation and distribution of As and localization of nutrients in rice grains. New Phytol 184:193–201

    Article  CAS  PubMed  Google Scholar 

  • Lorenz R, Bernhart SH, Honer Zu Siederdissen C, Tafer H, Flamm C, Stadler PF, Hofacker IL (2011) ViennaRNA Package 2.0. Algorithms. Mol Biol 6:26

    Google Scholar 

  • Marrs KA, Walbot V (1997) Expression and RNA splicing of the maize glutathione S-transferase Bronze2 gene is regulated by cadmium and other stresses. Plant Physiol 113:93–102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martínez M, Bernal P, Almela C, Vélez D, García-Augustín P, Serrano R, Navarro-Aviñó J (2006) An engineered plant that accumulates higher levels of heavy metals than Thlaspi caerulescens, with yields of 100 times more biomass in mine soils. Chemosphere 64:478–485

    Article  PubMed  Google Scholar 

  • Mayeda A, Munroe SH, Cáceres JF, Krainer AR (1994) Function of conserved domains of hnRNP A1 and other hnRNP A/B proteins. EMBO J 15:5483–5495

    Google Scholar 

  • Meharg AA, Williams PN, Adomako E, Lawgali YY, Deacon C, Villada A, Cambell RCJ, Sun GX, Zhu YG, Feldmann J, Raab A, Zhao FJ, Islam MR, Hossain S, Yanai J (2009) Geographical variation in total and inorganic arsenic content of polished (white) rice. Environ Sci Technol 43:1612–1617

    Article  CAS  PubMed  Google Scholar 

  • Pomponi M, Censi V, Di Girolamo V, De Paolis A, di Toppi LS, Aromolo R, Costantino P, Cardarelli M (2006) Overexpression of Arabidopsis phytochelatin synthase in tobacco plants enhances Cd2 + tolerance and accumulation but not translocation to the shoot. Planta 223:180–190

    Article  CAS  PubMed  Google Scholar 

  • Qu LQ, Xing YP, Liu WX, Xu XP, Song YR (2008) Expression pattern and activity of six glutelin gene promoters in transgenic rice. J Exp Bot 59:2417–2424

    Article  CAS  PubMed Central  Google Scholar 

  • Ramos J, Clemente MR, Naya L, Loscos J, Pérez-Rontomé C, Sato S, Tabata S, Becana M (2007) Phytochelatin synthases of the model legume Lotus japonicus. A small multigene family with differential response to cadmium and alternatively spliced variants. Plant Physiol 143:1110–1118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramos J, Naya L, Gay M, Abian J, Becana M (2008) Functional characterization of an unusual phytochelatin synthase, LjPCS3, of Lotus japonicus. Plant Physiol 148:536–545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rauser WE (1995) Phytochelatins and related peptides: structure, biosynthesis, and function. Plant Physiol 109:1141–1149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ray D, Williams DL (2011) Characterization of the phytochelatin synthase of Schistosoma mansoni. PLoS Negl Trop Dis 5:e1168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reddy AS (2007) Alternative splicing of pre-messenger RNAs in plants in the genomic era. Annu Rev Plant Biol 58:267–294

    Article  CAS  PubMed  Google Scholar 

  • Rogan N, Serafimovski T, Dolenec M, Tasev G, Dolenec T (2009) Heavy metal contamination of paddy soils and rice (Oryza sativa L.) from Kočani Field (Macedonia). Environ Geochem Health 31:439–451

    Article  CAS  PubMed  Google Scholar 

  • Romanyuk ND, Rigden DJ, Vatamaniuk OK, Lang A, Cahoon RE, Jez JM, Rea PA (2006) Mutagenic definition of a papain-like catalytic triad, sufficiency of the N-terminal domain for single-site core catalytic enzyme acylation, and C-terminal domain for augmentative metal activation of a eukaryotic phytochelatin synthase. Plant Physiol 141(3):858–869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruotolo R, Peracchi A, Bolchi A, Infusini G, Amoresano A, Ottonello S (2004) Domain organization of phytochelatin synthase. Functional properties of truncated enzyme species identified by limited proteolysis. J Biol Chem 279:14686–14693

    Article  CAS  PubMed  Google Scholar 

  • Sauge-Merle S, Cuine S, Carrier P, Lecomte-Pradines C, Luu DT, Peltier G (2003) Enhanced toxic metal accumulation in engineered bacterial cells expressing Arabidopsis thaliana phytochelatin synthase. Appl Environ Microbio 69:490–494

    Article  CAS  Google Scholar 

  • Schmöger MEV, Oven M, Grill E (2000) Detoxification of arsenic by phytochelatins in plants. Plant Physiol 122:793–802

    Article  PubMed  PubMed Central  Google Scholar 

  • Shri M, Dave R, Dwivedi S, Shukla D, Kesari R, Tripathi RD, Trivedi PK, Chakrabarty D (2014) Heterologous expression of Ceratophyllum demersum phytochelatin synthase, CdPCS1, in rice leads to lower arsenic accumulation in grain. Sci Rep 4:5784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song WY, Yamaki T, Yamaji N, Ko D, Jung KH, Fujii-Kashino M, An G, Martinoia E, Lee Y, Ma JF (2014) A rice ABC transporter, OsABCC1, reduces arsenic accumulation in the grain. Proc Natl Acad Sci USA 111:15699–15704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Syed NH, Kalyna M, Marquez Y, Barta A, Brown JW (2012) Alternative splicing in plants–coming of age. Trends Plant Sci 17:616–623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trotta E (2014) On the normalization of the minimum free energy of RNAs by sequence length. PLoS ONE 9:e113380

    Article  PubMed  PubMed Central  Google Scholar 

  • Vatamaniuk OK, Mari S, Lu YP, Rea PA (1999) AtPCS1, a phytochelatin synthase from Arabidopsis : isolation and in vitroreconstitution. Proc Natl Acad Sci USA 96:7110–7115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vatamaniuk OK, Mari S, Lang A, Chalasani S, Demkiv LO, Rea PA (2004) Phytochelatin synthase, a dipeptidyltransferase that undergoes multisite acylation with γ-glutamylcysteine during catalysis. J Biol Chem 279(21):22449–22460

    Article  CAS  PubMed  Google Scholar 

  • Vivares D, Arnoux P, Pignol D (2005) A papain-like enzyme at work: native and acyl-enzyme intermediate structures in phytochelatin synthesis. Proc Natl Acad Sci USA 102:18848–18853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vogeli-Lange R, Wagner GJ (1990) Subcellular localization of cadmium-binding peptides in tobacco leaves. Implications of a transport function for cadmium-binding peptides. Plant Physiol 92:1086–1093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang BB, Brendel V (2006) Genome-wide comparative analysis of alternative splicing in plants. Proc Natl Acad Sci USA 103:7175–7180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams PN, Lei M, Sun GX, Huang Q, Lu Y, Deacon C, Meharg AA, Zhu YG (2009) Occurrence and partitioning of cadmium, arsenic and lead in mine impacted paddy rice: Hunan, China. Sci Total Environ 43:637–642

    Article  CAS  Google Scholar 

  • Wu J, Kang JH, Hettenhausen C, Baldwin IT (2007) Nonsense mediated mRNA decay (NMD) silences the accumulation of aberrant trypsin proteinase inhibitor mRNA in Nicotiana attenuata. Plant J 51:693–706

    Article  CAS  PubMed  Google Scholar 

  • Zenk MH (1996) Heavy metal detoxification in higher plants - a review. Gene 179:21–30

    Article  CAS  PubMed  Google Scholar 

  • Zhang BH, Pan XP, Cox SB, Cobb GP, Anderson TA (2006) Evidence that miRNAs are different from other RNAs. Cell Mol Life Sci 63:246–254

    Article  CAS  PubMed  Google Scholar 

  • Zheng R, Chen Z, Cai C, Tie B, Liu X, Reid BJ, Huang Q, Lei M, Sun G, Baltrėnaitė E (2015) Mitigating heavy metal accumulation into rice (Oryza sativa L.) using biochar amendment-a field experiment in Hunan, China. Environ Sci Pollut Res 22:11097–11108

    Article  CAS  Google Scholar 

  • Zhu J, Krainer AR (2000) Pre-mRNA splicing in the absence of an SR protein RS domain. Genes Dev 14:3166–3178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu YG, Williams PN, Meharg AA (2008) Exposure to inorganic arsenic from rice: a global health issue? Environ Pollut 154:169–171

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We sincerely thank late Prof. Soumitra K. Sen and Dr. Asitava Basu for their cooperation and help. The authors acknowledge Dr. Agnieszka Golicz for the help during the secondary RNA structure prediction analysis. We also acknowledge the technical help received from Mr. Sona Dogra, Mrs. Gayatri Aditya, Mr. Manoj Aditya and Mr. Nitai Giri. This work was supported by the grants from DBT, Govt. of India (BT/PR12907/AGR/36/639/2009), and the IIT Kharagpur Food Security Project (F. No. 4–25/2013-TS-1).

Author contributions

Experimental designs and analyses of results were carried out by ND, SB and MKM. ND and SB conducted the experiments and prepared the manuscript. MKM and SB (BCKV) conceived the original research plan. MKM made the necessary corrections in the manuscript and supervised the research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mrinal K. Maiti.

Additional information

Natasha Das and Surajit Bhattacharya contributed equally to this research work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11103_2017_600_MOESM1_ESM.tif

Figure S1—Computational prediction of the RNA secondary structure of OsPCS2 transcripts. (A) The graphical representation of the secondary structure of OsPCS2a transcript based on the minimum free energy algorithm and base pairing probabilities. (B) The graphical representation of the secondary structure of OsPCS2b transcript based on the minimum free energy algorithm and base pairing probabilities. (C) The graphical representation of the secondary structure of the retained intron of the OsPCS2b transcript based on the minimum free energy algorithm and base pairing probabilities Supplementary material 1 (TIF 7366 KB)

11103_2017_600_MOESM2_ESM.tif

Figure S2—qRT-PCR based relative expression analysis of the OsPCS1 and OsPCS2a transcripts corresponding to the endogenous OsPCS genes in the leaf tissues of transformed rice lines when grown on pot with 10 mg/kg of CdCl2 amended with the soil. The tubulin gene was used as a housekeeping control gene to normalize the expression level. Con-UT: untransformed control rice plant without exogenous Cd stress. Con-Cd: untransformed control rice plant with exogenous Cd stress. ihpL1-Cd, ihpL2-Cd and ihpL3-Cd: the three transgenic rice lines with exogenous Cd stress. The error bars represent the standard deviation of the mean of three independent experiments carried out from three independent mRNA extractions Supplementary material 2 (TIF 24172 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, N., Bhattacharya, S., Bhattacharyya, S. et al. Identification of alternatively spliced transcripts of rice phytochelatin synthase 2 gene OsPCS2 involved in mitigation of cadmium and arsenic stresses. Plant Mol Biol 94, 167–183 (2017). https://doi.org/10.1007/s11103-017-0600-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-017-0600-1

Keywords

Navigation