Skip to main content
Log in

The small auxin-up RNA OsSAUR45 affects auxin synthesis and transport in rice

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Key message

This research is the first to demonstrate that OsSAUR45 is involved in plant growth though affecting auxin synthesis and transport by repressing OsYUCCA and OsPIN gene expression in rice.

Abstract

Small auxin-up RNAs (SAURs) comprise a large multigene family and are rapidly activated as part of the primary auxin response in plants. However, little is known about the role of SAURs in plant growth and development, especially in monocots. Here, we report the biological function of OsSAUR45 in the model plant rice (Oryza sativa). OsSAUR45 is expressed in a tissue-specific pattern and is localized to the cytoplasm. Rice lines overexpressing OsSAUR45 displayed pleiotropic developmental defects including reduced plant height and primary root length, fewer adventitious roots, narrower leaves, and reduced seed setting. Auxin levels and transport were reduced in the OsSAUR45 overexpression lines, potentially because of decreased expression of Flavin-binding monooxygenase family proteins (OsYUCCAs) and PIN-FORMED family proteins (OsPINs). Exogenous auxin application rapidly induced OsSAUR45 expression and partially restored the phenotype of rice lines overexpressing OsSAUR45. These results demonstrate that OsSAUR45 is involved in plant growth by affecting auxin synthesis and transport through the repression of OsYUCCA and OsPIN gene expression in rice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abel S, Theologis A (2010) The odyssey of auxin. Cold Spring Harb Perspect Biol 2:a004572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chae K, Isaacs CG, Reeves PH, Maloney GS, Muday GK, Nagpal P, Reed JW (2012) Arabidopsis SMALL AUXIN UP RNA63 promotes hypocotyl and stamen filament elongation. Plant J 71:684–697

    Article  CAS  PubMed  Google Scholar 

  • Chen Q, Dai X, De-Paoli H, Chen Y, Takebayashi Y, Kasahara H, Kamiy Y, Zhao Y (2014) Auxin overproduction in shoots cannot rescue auxin deficiencies in Arabidopsis roots. Plant Cell Physiol 55:1072–1079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng Y, Dai X, Zhao Y (2006) Auxin biosynthesis by the YUCCA flavin monooxygenases controls the formation of floral organs and vascular tissues in Arabidopsis. Genes Dev 20:1790–1799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng Y, Dai X, Zhao Y (2007) Auxin synthesized by the YUCCA flavin monooxygenases is essential for embryogenesis and leaf formation in Arabidopsis. Plant Cell 19:2430–2439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cho SH, Yoo SC, Zhang H, Pandeya D, Koh HJ, Hwang JY, Kim GT, Paek NC (2013) The rice narrow leaf2 and narrow leaf3 loci encode WUSCHEL-related homeobox 3A (OsWOX3A) and function in leaf, spikelet, tiller and lateral root development. New Phytol 198:1071–1084

    Article  CAS  PubMed  Google Scholar 

  • Denancé N, Sánchez-Vallet A, Goffner D, Molina A (2013) Disease resistance or growth: the role of plant hormones in balancing immune responses and fitness costs. Front Plant Sci 4:155

    Article  PubMed  PubMed Central  Google Scholar 

  • Fu J, Wang S (2011) Insights into auxin signaling in plant–pathogen interactions. Front Plant Sci 2:74

    Article  PubMed  PubMed Central  Google Scholar 

  • Gil P, Liu Y, Orbovic V, Verkamp E, Poff KL, Green PJ (1994) Characterization of the auxin-inducible SAUR-AC1 gene for use as a molecular genetic tool in Arabidopsis. Plant Physiol 104:777–784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hagen G, Guilfoyle T (2002) Auxin-responsive gene expression: genes, promoters and regulatory factors. Plant Mol Biol 49:373–385

    Article  CAS  PubMed  Google Scholar 

  • Hiei Y, Ohta S, Komari T, Kumashiro T (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 6:271–282

    Article  CAS  PubMed  Google Scholar 

  • Hou K, Wu W, Gan SS (2013) SAUR36, a small auxin up RNA gene, is involved in the promotion of leaf senescence in Arabidopsis. Plant Physiol 161:1002–1009

    Article  CAS  PubMed  Google Scholar 

  • Jain M, Tyagi AK, Khurana JP (2006) Genome-wide analysis, evolutionary expansion, and expression of early auxin-responsive SAUR gene family in rice (Oryza sativa). Genomics 88:360–371

    Article  CAS  PubMed  Google Scholar 

  • Kant S, Rothstein S (2009) Auxin-responsive SAUR39 gene modulates auxin level in rice. Plant Signal Behav 4:1174–1175

    Article  PubMed  PubMed Central  Google Scholar 

  • Kant S, Bi YM, Zhu T, Rothstein SJ (2009) SAUR39, a small auxin-up RNA gene, acts as a negative regulator of auxin synthesis and transport in rice. Plant Physiol 151:691–701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knauss S, Rohrmeier T, Lehle L (2003) The Auxin-induced maize gene ZmSAUR2 encodes a short-lived nuclear protein expressed in elongating tissues. J Biol Chem 278:23936–23943

    Article  CAS  PubMed  Google Scholar 

  • Kong Y, Zhu Y, Gao C, She W, Lin W, Chen Y, Han N, Bian H, Zhu M, Wang J (2013) Tissue-specific expression of SMALL AUXIN UP RNA41 differentially regulates cell expansion and root meristem patterning in Arabidopsis. Plant Cell Physiol 54:609–621

    Article  CAS  PubMed  Google Scholar 

  • McClure BA, Guilfoyle TJ (1987) Characterization of a class of small auxin-inducible polyadenylated RNAs. Plant Mol Biol 9:611–623

    Article  CAS  PubMed  Google Scholar 

  • McClure BA, Hagen G, Brown CS, Gee MA, Guilfoyle TJ (1989) Transcription, organization, and sequence of an auxin-regulated gene cluster in soybean. Plant Cell 1:229–239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park JE, Kim YS, Yoon HK, Park M (2007a) Functional characterization of a small auxin-up RNA gene in apical hook development in Arabidopsis. Plant Sci 172:150–157

    Article  CAS  Google Scholar 

  • Park JE, Park JY, Kim YS, Sraswick PE, Jeon J, Yun J, Kim SY, Kim J, Lee YH, Park CM (2007b) GH3-mediated auxin homeostasis links growth regulation with stress adaptation response in Arabidopsis. J Biol Chem 282:10036–10046

    Article  CAS  PubMed  Google Scholar 

  • Qi J, Qian Q, Bu Q, Li S, Chen Q, Sun J, Liang W, Zhou Y, Chu C, Li X, Ren F, Palme K, Zhao B, Chen J, Chen M, Li C (2008) Mutation of the rice Narrow leaf1 gene, which encodes a novel protein, affects vein patterning and polar auxin transport. Plant Physiol 147:1947–1959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qiu T, Chen Y, Li M, Kong Y, Zhu Y, Han N, Bian H, Zhu M, Wang J (2013) The tissue-specific and developmentally regulated expression patterns of the SAUR41 subfamily of SMALL AUXIN UP RNA genes: potential implications. Plant Signal Behav 8:e25283

    Article  PubMed  PubMed Central  Google Scholar 

  • Rock CD, Sun X (2005) Crosstalk between ABA and auxin signaling pathways in roots of Arabidopsis thaliana (L.). Heynh. Planta 222:98–106

    Article  CAS  PubMed  Google Scholar 

  • Roux C, Bilang J, Theunissen BH, Rechenmann CP (1998) Identification of new early auxin markers in tobacco by mRNA differential display. Plant Mol Biol 37:385–389

    Article  CAS  PubMed  Google Scholar 

  • Shen CJ, Wang SK, Zhang SN, Xu YX, Qian Q, Qi YH, Jiang DA (2013) OsARF16, a transcription factor, is required for auxin and phosphate starvation response in rice (Oryza sativa L.). Plant Cell Environ 36:607–620

    Article  CAS  PubMed  Google Scholar 

  • Spartz AK, Lee SH, Wenger JP, Gonzalez N, Itoh H, Inzé D, Peer WA, Murphy AS, Overvoorde P, Gray WM (2012) The SAUR19 subfamily of SMALL AUXIN UP RNA genes promote cell expansion. Plant J 70:978–990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spartz AK, Ren H, Park MY, Grandt KN, Lee SH, Murphy AS, Sussman MR, Overvoorde PJ, Gray WM (2014) SAUR inhibition of PP2C-D phosphatases activates plasma membrane H+-ATPases to promote cell expansion in Arabidopsis. Plant Cell 26:2129–2142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stamm P, Kumar PP (2013) Auxin and gibberellin responsive Arabidopsis SMALL AUXIN UP RNA36 regulates hypocotyl elongation in the light. Plant Cell Rep 32:759–769

    Article  CAS  PubMed  Google Scholar 

  • Staswick PE, Serban B, Rowe M, Tiryaki I, Maldonado MT, Maldonado MC et al (2005) Characterization of an Arabidopsis enzyme family that conjugates amino acids to indole-3-acetic acid. Plant Cell 17:616–627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun N, Wang J, Gao Z, Dong J, He H, Terzaghi W, Wei N, Deng XW, Chen H (2016) Arabidopsis SAURs are critical for differential light regulation of the development of various organs. Proc Natl Acad Sci USA 113:6071–6076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teale WD, Ditengou FA, Dovzhenko AD, Li X, Molendijk AM, Ruperti B, Paponov I, Palme K (2008) Auxin as a model for the integration of hormonal signal processing and transduction. Mol Plant 1:229–237

    Article  CAS  PubMed  Google Scholar 

  • Watillon B, Kettmann R, Arredouani A, Hecquet JF, Boxus P, Burny A (1998) Apple messenger RNAs related to bacterial lignostilbene dioxygenase and plant SAUR genes are preferentially expressed in flowers. Plant Mol Biol 36:909–915

    Article  CAS  PubMed  Google Scholar 

  • Woodward AW, Bartel B (2005a) A receptor for auxin. Plant Cell 17:2425–2429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woodward AW, Bartel B (2005b) Auxin: regulation, action, and interaction. Ann Bot (Lond) 95:707–735

    Article  CAS  Google Scholar 

  • Xie R, Dong C, Ma Y, Deng L, He S, Yi S, Lv Q, Zheng Y (2015) Comprehensive analysis of SAUR gene family in citrus and its transcriptional correlation with fruitlet drop from abscission zone A. Funct Integr Genomics 15:729–740

    Article  CAS  PubMed  Google Scholar 

  • Xu M, Zhu L, Shou H, Wu P (2005) A PIN1 family gene, OsPIN1, involved in auxin-dependent adventitious root emergence and tillering in rice. Plant Cell Physiol 46:1674–1681

    Article  CAS  PubMed  Google Scholar 

  • Xu YX, Zhang SN, Guo HP, Wang SK, Xu LG, Li CY, Qian Q, Chen F, Geisler M, Qi YH, Jiang DA (2014) OsABCB14 functions in auxin transport and iron homeostasis in rice (Oryza sativa L.). Plant J 79:106–117

    Article  CAS  PubMed  Google Scholar 

  • Xu YX, Mao J, Chen W, Qian TT, Liu SC, Hao WJ, Li CF, Chen L (2016) Identification and expression profiling of the auxin response factors (ARFs) in the tea plant (Camellia sinensis (L.) O. Kuntze) under various abiotic stresses. Plant Physiol Biochem 98:46–56

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto KT, Mori H, Imaseki H (1992) Novel mRNA sequences induced by indole-3-acetic acid in sections of elongating hypocotyls of mung bean (Vigna radiata). Plant Cell Physiol 33:13–20

    CAS  Google Scholar 

  • Yamamoto Y, Kamiya N, Morinaka Y, Matsuoka M, Sazuka T (2007) Auxin biosynthesis by the YUCCA genes in rice. Plant Physiol 143:1362–1371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang TB, Poovaiah BW (2000) Molecular and biochemical evidence for the involvement of calcium/calmodulin in auxin action. J Biol Chem 275:3137–3143

    Article  CAS  PubMed  Google Scholar 

  • Yoo SD, Cho YH, Sheen J (2007) Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Protoc 2:1565–1572

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Su J, Duan S, Ao Y, Dai J, Liu J, Wang P, Li Y, Liu B, Feng D, Wang J, Wang H (2011) A highly efficient rice green tissue protoplast system for transient gene expression and studying light/chloroplast-related processes. Plant Methods 7:30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation (31371591, 31600562). We thank Professor Akio Miyao in the Rice Genome Resource Center, Japan for provision of the full-length cDNA clone of OsSAUR45.

Author contributions

Conceived and designed the experiment: Y-XX, D-AJ. Performed the experiments: Y-XX, M-ZX, YL, J-LF. Discussed the data: YH. Wrote the paper: Y-XX, D-AJ.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yan-Xia Xu or De-An Jiang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 9556 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, YX., Xiao, MZ., Liu, Y. et al. The small auxin-up RNA OsSAUR45 affects auxin synthesis and transport in rice. Plant Mol Biol 94, 97–107 (2017). https://doi.org/10.1007/s11103-017-0595-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-017-0595-7

Keywords

Navigation