Skip to main content
Log in

Wheat drought-responsive WXPL transcription factors regulate cuticle biosynthesis genes

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

The cuticle forms a hydrophobic waxy layer that covers plant organs and provides protection from biotic and abiotic stresses. Transcription of genes responsible for cuticle formation is regulated by several types of transcription factors (TFs). Five orthologous to WAX PRODUCTION (WXP1 and WXP2) genes from Medicago truncatula were isolated from a cDNA library prepared from flag leaves and spikes of drought tolerant wheat (Triticum aestivum, breeding line RAC875) and designated TaWXP-like (TaWXPL) genes. Tissue-specific and drought-responsive expression of TaWXPL1D and TaWXPL2B was investigated by quantitative RT-PCR in two Australian wheat genotypes, RAC875 and Kukri, with contrasting glaucousness and drought tolerance. Rapid dehydration and/or slowly developing cyclic drought induced specific expression patterns of WXPL genes in flag leaves of the two cultivars RAC875 and Kukri. TaWXPL1D and TaWXPL2B proteins acted as transcriptional activators in yeast and in wheat cell cultures, and conserved sequences in their activation domains were localised at their C-termini. The involvement of wheat WXPL TFs in regulation of cuticle biosynthesis was confirmed by transient expression in wheat cells, using the promoters of wheat genes encoding two cuticle biosynthetic enzymes, the 3-ketoacyl-CoA-synthetase and the cytochrome P450 monooxygenase. Using the yeast 1-hybrid (Y1H) assay we also demonstrated the differential binding preferences of TaWXPL1D and TaWXPL2B towards three stress-related DNA cis-elements. Protein structural determinants underlying binding selectivity were revealed using comparative 3D molecular modelling of AP2 domains in complex with cis-elements. A scheme is proposed, which links the roles of WXPL and cuticle-related MYB TFs in regulation of genes responsible for the synthesis of cuticle components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 1

Similar content being viewed by others

Abbreviations

3D:

Three-dimensional

ABA:

Abscisic acid

DOPE:

Discrete optimised protein energy

GFP:

Green fluorescent protein

HD-Zip IV:

Homeodomain-leucine zipper class IV

IWGSC:

International wheat genome sequencing consortium

LEA:

Late embryogenesis abundant

MOF:

Modeller objective function

Q-PCR:

Quantitative PCR

Ta:

Triticum aestivum

TF(s):

Transcription factor(s)

WXP:

WAX PRODUCTION

WXPL:

WXP-like

Y1H:

Yeast-1-hybrid

References

  • Adamski NM, Bush MS, Simmonds J, Turner AS, Mugford SG, Jones A, Findlay K, Pedentchouk N, von Wettstein-Knowles P, Uauy C (2013) The inhibitor of wax 1 locus (Iw1) prevents formation of β- and OH-β-diketones in wheat cuticular waxes and maps to a sub-cM interval on chromosome arm 2BS. Plant J 74:989–1002

    Article  CAS  PubMed  Google Scholar 

  • Aharoni A, Dixit S, Jetter R, Thoenes E, van Arkel G, Pereira A (2004) The SHINE clade of AP2 domain transcription factors activates wax biosynthesis, alters cuticle properties, and confers drought tolerance when overexpressed in Arabidopsis. Plant Cell 16:2463–2480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allen MD, Yamasaki K, Ohme-Takagi M, Tateno M, Suzuki M (1998) A novel mode of DNA recognition by a beta-sheet revealed by the solution structure of the GCC-box binding domain in complex with DNA. EMBO J 17:5484–5496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amalraj A, Luang S, Kumar MY, Sornaraj P, Eini O, Kovalchuk N, Bazanova N, Li Y, Yang N, Eliby S, Langridge P, Hrmova M, Lopato S (2016) Change of function of the wheat stress-responsive transcriptional repressor TaRAP2.1Lby repressor motif modification. Plant Biotechnol J 14:820–832

    Article  CAS  PubMed  Google Scholar 

  • Bailey TL, Bodén M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, LI WW, Noble WS (2009) MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res 37:W202–W208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baker SS, Wilhelm KS, Thomashow MF (1994) The 5′-region of Arabidopsis thaliana cor15a has cis-acting elements that confer cold-, drought-and ABA-regulated gene expression. Plant Mol Biol 24:701–713

    Article  CAS  PubMed  Google Scholar 

  • Baltes NJ, Voytas DF (2015) Enabling plant synthetic biology through genome engineering. Trends Biotechnol 33:120–131

    Article  CAS  PubMed  Google Scholar 

  • Beisson F, Koo AJ, Ruuska S, Schwender J, Pollard M, Thelen JJ, Paddock T, Salas JJ, Savage L, Milcamps A, Mhaske VB, Cho Y, Ohlrogge JB (2003) Arabidopsis genes involved in acyl lipid metabolism. A 2003 census of the candidates, a study of the distribution of expressed sequence tags in organs, and a web-based database. Plant Physiol 132:681–697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bennett D, Izanloo A, Reynolds M, Kuchel H, Langridge P, Schnurbusch T (2012a) Genetic dissection of grain yield and physical grain quality in bread wheat (Triticum aestivum L.) under water-limited environments. Theor Appl Genet 125:255–271

    Article  PubMed  Google Scholar 

  • Bennett D, Izanloo A, Edwards J, Kuchel H, Chalmers K, Tester M, Reynolds M, Schnurbusch T, Langridge P (2012b) Identification of novel quantitative trait loci for days to ear emergence and flag leaf glaucousness in a bread wheat (Triticum aestivum L.) population adapted to southern Australian conditions. Theor Appl Genet 124:697–711

    Article  PubMed  Google Scholar 

  • Bi H, Luang S, Li Y, Bazanova N, Morran S, Song Z, Perera MA, Hrmova M, Borisjuk N, Lopato S (2016) Identification and characterization of wheat drought-responsive MYB transcription factors involved in the regulation of cuticle biosynthesis. J Exp Bot 67:5363–5380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borisjuk N, Hrmova M, Lopato S (2014) Transcriptional regulation of cuticle biosynthesis. Biotechnol Adv 32:526–540

    Article  CAS  PubMed  Google Scholar 

  • Bowne JB, Erwin TA, Juttner J, Schnurbusch T, Langridge P, Bacic A, Roessner U (2012) Drought responses of leaf tissues from wheat cultivars of differing drought tolerance at the metabolite level. Mol Plant 5:418–429

    Article  CAS  PubMed  Google Scholar 

  • Bru C, Courcelle E, Carrère S, Beausse Y, Dalmar S, Kahn D (2005) The ProDom database of protein domain families: more emphasis on 3D. Nucleic Acids Res 33:D212–D215

    Article  CAS  PubMed  Google Scholar 

  • Buxdorf K, Rubinsky G, Barda O, Burdman S, Aharoni A, Levy M (2014) The transcription factor SlSHINE3 modulates defense responses in tomato plants. Plant Mol Biol 84:37–47

    Article  CAS  PubMed  Google Scholar 

  • Chen M, Wang QY, Cheng XG, Xu ZS, Li LC, Ye XG, Xia LQ, Ma YZ (2007) GmDREB2, a soybean DRE-binding transcription factor, conferred drought and high-salt tolerance in transgenic plants. Biochem Biophys Res Commun 353:299–305

    Article  CAS  PubMed  Google Scholar 

  • Cheng J, Randall A, Sweredoski M, Baldi P (2005) SCRATCH: A protein structure and structural feature prediction server. Nucleic Acids Res 33:W72–W76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cominelli E, Sala T, Calvi D, Gusmaroli G, Tonelli C (2008) Over-expression of the Arabidopsis AtMYB41 gene alters cell expansion and leaf surface permeability. Plant J 53:53–64

    Article  CAS  PubMed  Google Scholar 

  • Cui F, Brosché M, Lehtonen MT, Amiryousefi A, Xu E, Punkkinen M, Valkonen JP, Fujii H, Overmyer K (2016) Dissecting abscisic acid signaling pathways involved in cuticle formation. Mol Plant 9:926–938

    Article  CAS  PubMed  Google Scholar 

  • Ecker JR (1995) The ethylene signal transduction pathway in plants. Science 268:667–675

    Article  CAS  PubMed  Google Scholar 

  • Eini O, Yang N, Pyvovarenko T, Pillman K, Bazanova N, Tikhomirov N, Eliby S, Shirley N, Sivasankar S, Tingey S, Langridge P, Hrmova M, Lopato S (2013) Complex regulation by Apetala2 domain-containing transcription factors revealed through analysis of the stress-responsive TdCor410b promoter from durum wheat. PLoS ONE 8:e58713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elliott RC, Betzner AS, Huttner E, Oakes MP, Tucker WQ, Gerentes D, Perez P, Smyth DR (1996) AINTEGUMENTA, an APETALA2-like gene of Arabidopsis with pleiotropic roles in ovule development and floral organ growth. Plant Cell 8:155–168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Emsley P, Lohkamp B, Scott WG, Cowtan K (2010) Features and development of Coot. Acta Crystallogr D 66:486–501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eswar N, Eramian D, Webb B, Shen MY, Sali A (2008) Protein structure modeling with modeller. Methods Mol Biol 426:145–159

    Article  CAS  PubMed  Google Scholar 

  • Ferreira Neto JR, Pandolfi V, Guimaraes FC, Benko-Iseppon AM, Romero C, Silva RL, Rodrigues FA, Abdelnoor RV, Nepomuceno AL, Kido EA (2013) Early transcriptional response of soybean contrasting accessions to root dehydration. PLoS ONE 8:e83466

    Article  PubMed  PubMed Central  Google Scholar 

  • Fersht AR (1987) The hydrogen bond in molecular recognition. Trends Biochem Sci 12:301–304

    Article  CAS  Google Scholar 

  • Fletcher SJ (2014) qPCR for quantification of transgene expression and determination of transgene copy number. Methods Mol Biol 1145:213–237

    Article  CAS  PubMed  Google Scholar 

  • Gasteiger E, Gattiker A, Hoogland C, Ivanyi I, Appel RD, Bairoch A (2003) ExPASy: the proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res 31:3784–3788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gille C, Fähling M, Wey B, Wiel T, Gille A (2014) Alignment-annotator web server: rendering and annotating sequence alignments. Nucleic Acids Res 42:W3–W6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giménez E, Dominguez E, Pineda B, Heredia A, Moreno V, Lozano R, Angosto T (2015) Transcriptional activity of the MADS box ARLEQUIN/TOMATO AGAMOUS-LIKE1 gene is required for cuticle development of tomato fruit. Plant Physiol 168:1036–1048

    Article  PubMed  PubMed Central  Google Scholar 

  • Harris JC, Sornaraj P, Taylor M, Bazanova N, Baumann U, Lovell B, Langridge P, Lopato S, Hrmova M (2016) Molecular interactions of the gamma-clade homeodomain-leucine zipper class I transcription factors during the wheat response to water deficit. Plant Mol Biol 90:435–452

    Article  CAS  PubMed  Google Scholar 

  • Hen-Avivi S, Savin O, Racovita RC, Lee WS, Adamski NM, Malitsky S, Almekias-Siegl E, Levy M, Vautrin S, Bergès H, Friedlander G, Kartvelishvily E, Ben-Zvi G, Alkan N, Uauy C, Kanyuka K, Jetter R, Distelfeld A, Aharoni A (2016) A metabolic gene cluster in the wheat W1 and the barley Cer-cqu loci determines β-diketone biosynthesis and glaucousness. Plant Cell 28:1440–1460

    Article  CAS  PubMed  Google Scholar 

  • Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Res 27:297–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hrmova M, Lopato S (2014) Enhancing abiotic stress tolerance in plants by modulating properties of stress responsive transcription factors. In: Tuberosa R, Graner A, Frison E (eds) Genomics of plant genetic resources. Part II: crop productivity, food security and nutritional quality. Springer, Dordrecht, Vol 2, pp 291–316, 515 pp

  • Huang B, Jin L, Liu JY (2007) Identification and characterization of the novel gene GhDBP2 encoding a DRE-binding protein from cotton (Gossypium hirsutum). J Plant Physiol 165:214–223

    Article  PubMed  Google Scholar 

  • Izanloo A, Condon AG, Langridge P, Tester M, Schnurbusch T (2008) Different mechanisms of adaptation to cyclic water stress in two South Australian bread wheat cultivars. J Exp Bot 59:3327–3346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Javelle M, Vernoud V, Depege-Fargeix N, Arnould C, Oursel D, Domergue F, Sarda X, Rogowsky PM (2010) Overexpression of the epidermis-specific homeodomain-leucine zipper IV transcription factor outer cell layer1 in maize identifies target genes involved in lipid metabolism and cuticle biosynthesis. Plant Physiol 154:273–286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jetter R, Kunst L (2008) Plant surface lipid biosynthetic pathways and their utility for metabolic engineering of waxes and hydrocarbon biofuels. Plant J 54:670–683

    Article  CAS  PubMed  Google Scholar 

  • Jetter R, Kunst L, Samuels AL (2006) Composition of plant cuticular waxes. Blackwell, Oxford

    Book  Google Scholar 

  • Jin J, Zhang H, Kong L, Gao G, Luo J (2014) PlantTFDB 3.0: a portal for the functional and evolutionary study of plant transcription factors. Nucleic Acids Res 42:D1182–D1187

    Article  CAS  PubMed  Google Scholar 

  • Johnson PF, Sterneck E, Williams SC (1993) Activation domains of transcriptional regulatory proteins. J Nutr Biochem 4:386–398

    Article  CAS  Google Scholar 

  • Kannangara R, Branigan C, Liu Y, Penfield T, Rao V, Mouille G, Höfte H, Pauly M, Riechmann JL, Broun P (2007) The transcription factor WIN1/SHN1 regulates Cutin biosynthesis in Arabidopsis thaliana. Plant Cell 19:1278–1294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kizis D, Pagès M (2002) Maize DRE-binding proteins DBF1 and DBF2 are involved in rab17 regulation through the drought-responsive element in an ABA-dependent pathway. Plant J 30:679–689

    Article  CAS  PubMed  Google Scholar 

  • La Rocca N, Manzotti PS, Cavaiuolo M, Barbante A, Dalla Vecchia F, Gabotti D, Gendrot G, Horner DS, Krstajic J, Persico M, Rascio N, Rogowsky P, Scarafoni A, Consonni G (2015) The maize fused leaves1 (fdl1) gene controls organ separation in the embryo and seedling shoot and promotes coleoptile opening. J Exp Bot 66:5753–5767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laskowski RA, Macarthur MW, Moss DS, Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystall 26:283–291

    Article  CAS  Google Scholar 

  • Letunic I, Doerks T, Bork P (2015) SMART: recent updates, new developments and status in 2015. Nucleic Acids Res 43:D257–D260

    Article  PubMed  Google Scholar 

  • Li-Beisson Y, Shorrosh B, Beisson F, Andersson MX, Arondel V, Bates PD, Baud S, Bird D, Debono A, Durrett TP, Franke RB, Graham IA, Katayama K, Kelly AA, Larson T, Markham JE, Miquel M, Molina I, Nishida I, Rowland O, Samuels L, Schmid KM, Wada H, Welti R, Xu C, Zallot R, Ohlrogge J (2010) Acyl-lipid metabolism. The Arabidopsis book / American Society of Plant Biologists 8:e0133

    Article  PubMed Central  Google Scholar 

  • Licausi F, Ohme-Takagi M, Perata P (2013) APETALA2/Ethylene Responsive Factor (AP2/ERF) transcription factors: mediators of stress responses and developmental programs. New Phytol 199:639–649

    Article  CAS  PubMed  Google Scholar 

  • Lin RC, Park HJ, Wang HY (2008) Role of Arabidopsis RAP2.4 in regulating light- and ethylene-mediated developmental processes and drought stress tolerance. Mol Plant 1:42–57

  • Liu Y, Chen H, Zhuang D, Jiang D, Liu J, Wu G, Yang M, Shen S (2010) Characterization of a DRE-binding transcription factor from Asparagus (Asparagus officinalis L.) and its overexpression in Arabidopsis resulting in salt-and drought-resistant transgenic plants. Int J Plant Sci 171:12–23

    Article  CAS  Google Scholar 

  • McWilliam H, Li W, Uludag M, Squizzato S, Park YM, Buso N, Cowley AP, Lopez R (2013) Analysis tool web services from the EMBL-EBI. Nucleic Acids Res 41:W597–W600

    Article  PubMed  PubMed Central  Google Scholar 

  • Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K (2012) AP2/ERF family transcription factors in plant abiotic stress responses. Biochim Biophys Acta 1819:86–96

    Article  CAS  PubMed  Google Scholar 

  • Morran S, Eini O, Pyvovarenko T, Parent B, Singh R, Ismagul A, Eliby S, Shirley N, Langridge P, Lopato S (2011) Improvement of stress tolerance of wheat and barley by modulation of expression of DREB/CBF factors. Plant Biotechnol J 9:230–249

    Article  CAS  PubMed  Google Scholar 

  • Nei M, Kumar S (2000) Molecular Evolution and Phylogenetics. Oxford University Press Inc, New York, NY

    Google Scholar 

  • Ohme-Takagi M, Shinshi H (1995) Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element. Plant Cell 7:173–182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pei JM, Tang M, Grishin NV (2008) PROMALS3D web server for accurate multiple protein sequence and structure alignments. Nucleic Acids Res 36:W30–W34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Porter J, Semenov M (2005) Crop responses to climatic variation. Philos Trans R Soc Biol Sci 360:2021–2035

  • Pyvovarenko T, Lopato S (2011) Isolation of plant transcription factors using a yeast one-hybrid system. Methods Mol Biol 754:45–66

    Article  CAS  PubMed  Google Scholar 

  • Rae L, Lao NT, Kavanagh TA (2011) Regulation of multiple aquaporin genes in Arabidopsis by a pair of recently duplicated DREB transcription factors. Planta 234:429–444

    Article  CAS  PubMed  Google Scholar 

  • Reynolds M, Foulkes J, Furbank R, Griffiths S, King J, Murchie E, Parry M, Slafer G (2012) Achieving yield gains in wheat. Plant Cell Env 35:1799–1823

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Sali A, Blundell TL (1993) Comparative protein modelling by satisfaction of spatial restraints. J Mol Boil 234:779–815

    Article  CAS  Google Scholar 

  • Schneider LM, Adamski NM, Christensen CE, Stuart DB, Vautrin S, Hansson M, Uauy C, von Wettstein-Knowles P (2016) The Cer-cqu gene cluster determines three key players in a β-diketone synthase polyketide pathway synthesizing aliphatics in epicuticular waxes. J Exp Bot. doi:10.1093/jxb/erw105

    PubMed  PubMed Central  Google Scholar 

  • Schymkowitz JW, Rousseau F, Martins IC, Ferkinghoff-Borg J, Stricher F, Serrano L (2005) Prediction of water and metal binding sites and their affinities by using the Fold-X force field. Proceed Natl Acad Sci USA 102:10147–10152

  • Sela D, Buxdorf K, Shi JX, Feldmesser E, Schreiber L, Aharoni A, Levy M (2013) Overexpression of AtSHN1/WIN1 provokes unique defense responses. PLoS One 8:e70146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seo PJ, Park CM (2011) Cuticular wax biosynthesis as a way of inducing drought resistance. Plant Signal Behav 6:1043–1045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seo PJ, Lee SB, Suh MC, Park MJ, Go YS, Park CM (2011) The MYB96 transcription factor regulates cuticular wax biosynthesis under drought conditions in Arabidopsis. Plant Cell 23:1138–1152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shaikhali J, Heiber I, Seidel T, Ströher E, Hiltscher H, Birkmann S, Dietz KJ, Baier M (2008) The redox-sensitive transcription factor Rap2.4a controls nuclear expression of 2-Cys peroxiredoxin A and other chloroplast antioxidant enzymes. BMC Plant Biol 8:48

    Article  PubMed  PubMed Central  Google Scholar 

  • Shen MY, Sali A (2006) Statistical potential for assessment and prediction of protein structures. Protein Sci 15:2507–2524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi JX, Malitsky S, De Oliveira S, Branigan C, Franke RB, Schreiber L, Aharoni A (2011) SHINE transcription factors act redundantly to pattern the archetypal surface of Arabidopsis flower organs. PLoS Genet 7:e1001388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi JX, Adato A, Alkan N, He Y, Lashbrooke J, Matas AJ, Meir S, Malitsky S, Isaacson T, Prusky D, Leshkowitz D, Schreiber L, Granell AR, Widemann E, Grausem B, Pinot F, Rose JK, Rogachev I, Rothan C, Aharoni A (2013) The tomato SlSHINE3 transcription factor regulates fruit cuticle formation and epidermal patterning. New Phytol 197:468–480

    Article  CAS  PubMed  Google Scholar 

  • Sippl MJ (1993) Recognition of errors in three-dimensional structures of proteins. Proteins 17:355–362

    Article  CAS  PubMed  Google Scholar 

  • Sun J, Peng X, Fan W, Tang M, Liu J, Shen S (2014) Functional analysis of BpDREB2 gene involved in salt and drought response from a woody plant Broussonetia papyrifera. Gene 535:140–149

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Y, Wu H, Zhao M, Wu W, Xu Y, Gu D (2016) Overexpression of the transcription factors GmSHN1 and GmSHN9 differentially regulates wax and cutin biosynthesis, alters cuticle properties, and changes leaf phenotypes in Arabidopsis. Int J Mol Sci 17, pii: E587. doi:10.3390/ijms17040587

    Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (1994) A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell 6:251–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang J, Isabel Ordiz M, Jaworski JG, Beachy RN (2011) Induced accumulation of cuticular waxes enhances drought tolerance in Arabidopsis by changes in development of stomata. Plant Physiol Biochem 49:1448–1455

    Article  CAS  PubMed  Google Scholar 

  • Yeats TH, Rose JK (2013) The formation and function of plant cuticles. Plant Physiol 163:5–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang JY, Broeckling CD, Blancaflor EB, Sledge MK, Sumner LW, Wang ZY (2005) Overexpression of WXP1, a putative Medicago truncatula AP2 domain-containing transcription factor gene, increases cuticular wax accumulation and enhances drought tolerance in transgenic alfalfa (Medicago sativa). Plant J 42:689–707

    Article  CAS  PubMed  Google Scholar 

  • Zhang JY, Broeckling CD, Sumner LW, Wang ZY (2007) Heterologous expression of two Medicago truncatula putative ERF transcription factor genes, WXP1 and WXP2, in Arabidopsis led to increased leaf wax accumulation and improved drought tolerance, but differential response in freezing tolerance. Plant Mol Biol 64:265–278

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Wang W, Li W (2013) Genetic interactions underlying the biosynthesis and inhibition of β-diketones in wheat and their impact on glaucousness and cuticle permeability. PLoS One 8:e54129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr Julie Hayes for critically reading the manuscript, Mr Paul Eckermann for advice on the mathematical treatment of data, and anonymous reviewers for constructive suggestions on the manuscript. The China Scholarship Council and the University of Adelaide are acknowledged for providing HB a joint postgraduate scholarship. This work was supported by the Australian Centre for Plant Functional Genomics, and by the Australian Research Council (to MH and SLo), the Grains Research & Development Corporation and the Government of South Australia.

Author contributions

HB performed most of the experiments. NB and YL assisted with experiments. SLu and MH performed molecular modelling. SLo, NBo and MH guided research and wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Hrmova.

Ethics declarations

Conflict of interest

Conflict of interest Authors declare that they have no conflict of interest.

Additional information

GeneBank accession numbers

TaWPXL1A - KX611869; TaWPXL1B - KX611870; TaWPXL1D - KX611871; TaWPXL2B - KX611872; TaWPXL2D - KX611873.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 38 KB)

Supplementary material 2 (PDF 408 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bi, H., Luang, S., Li, Y. et al. Wheat drought-responsive WXPL transcription factors regulate cuticle biosynthesis genes. Plant Mol Biol 94, 15–32 (2017). https://doi.org/10.1007/s11103-017-0585-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-017-0585-9

Keywords

Navigation