Skip to main content
Log in

Formation of wood secondary cell wall may involve two type cellulose synthase complexes in Populus

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Cellulose biosynthesis is mediated by cellulose synthases (CesAs), which constitute into rosette-like cellulose synthase complexe (CSC) on the plasma membrane. Two types of CSCs in Arabidopsis are believed to be involved in cellulose synthesis in the primary cell wall and secondary cell walls, respectively. In this work, we found that the two type CSCs participated cellulose biosynthesis in differentiating xylem cells undergoing secondary cell wall thickening in Populus. During the cell wall thickening process, expression of one type CSC genes increased while expression of the other type CSC genes decreased. Suppression of different type CSC genes both affected the wall-thickening and disrupted the multilaminar structure of the secondary cell walls. When CesA7A was suppressed, crystalline cellulose content was reduced, which, however, showed an increase when CesA3D was suppressed. The CesA suppression also affected cellulose digestibility of the wood cell walls. The results suggest that two type CSCs are involved in coordinating the cellulose biosynthesis in formation of the multilaminar structure in Populus wood secondary cell walls.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arioli T, Peng L, Betzner AS, Burn J, Wittke W, Herth W, Camilleri C, Hofte H, Plazinski J, Birch R, Cork A, Glover J, Redmond J, Williamson RE (1998) Molecular analysis of cellulose biosynthesis in Arabidopsis. Science 279(5351):717–720

    Article  CAS  PubMed  Google Scholar 

  • Atanassov II, Pittman JK, Turner SR (2009) Elucidating the mechanisms of assembly and subunit interaction of the cellulose synthase complex of Arabidopsis secondary cell walls. J Biol Chem 284(6):3833–3841

    Article  CAS  PubMed  Google Scholar 

  • Betancur L, Singh B, Rapp RA, Wendel JF, Marks MD, Roberts AW, Haigler CH (2010) Phylogenetically distinct cellulose synthase genes support secondary wall thickening in Arabidopsis shoot trichomes and cotton fiber. J Integr Plant Biol 52(2):205–220

    Article  CAS  PubMed  Google Scholar 

  • Blaschek W, Koehler H, Semler U, Franz G (1982) Molecular weight distribution of cellulose in primary cell walls. Planta 154(6):550–555

    Article  CAS  PubMed  Google Scholar 

  • Brändström J (2002) Morphology of Norway spruce tracheids with emphasis on cell wall organisation, vol 237. Swedish University of Agricultural Sciences Uppsala, Sweden

    Google Scholar 

  • Buchanan BB, Gruissem W, Jones RL (2000) Biochemistry and molecular biology of plants, vol 3. American Society of Plant Physiologists, Rockville

    Google Scholar 

  • Carroll A, Mansoori N, Li SD, Lei L, Vernhettes S, Visser RGF, Somerville C, Gu Y, Trindade LM (2012) Complexes with mixed primary and secondary cellulose synthases are functional in Arabidopsis plants. Plant Physiol 160(2):726–737. doi:10.1104/pp.112.199208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Delmer DP (1999) CELLULOSE BIOSYNTHESIS: exciting times for a difficult field of study. Annu Rev Plant Physiol Plant Mol Biol 50:245–276

    Article  CAS  PubMed  Google Scholar 

  • Desprez T, Juraniec M, Crowell EF, Jouy H, Pochylova Z, Parcy F, Hofte H, Gonneau M, Vernhettes S (2007) Organization of cellulose synthase complexes involved in primary cell wall synthesis in Arabidopsis thaliana. Proc Natl Acad Sci USA 104(39):15572–15577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doblin MS, Kurek I, Jacob-Wilk D, Delmer DP (2002) Cellulose biosynthesis in plants: from genes to rosettes. Plant Cell Physiol 43(12):1407–1420

    Article  CAS  PubMed  Google Scholar 

  • Evert RF (2006) Esau’s Plant anatomy: meristems, cells, and tissues of the plant body: their structure, function, and development. 3rd edn Wiley, New Jersey

    Book  Google Scholar 

  • Foster CE, Martin TM, Pauly M (2010a) Comprehensive compositional analysis of plant cell walls (lignocellulosic biomass) part I: Lignin. J Vis Exp (37):e1745. doi:10.3791/1745

  • Foster CE, Martin TM, Pauly M (2010b) Comprehensive compositional analysis of plant cell walls (lignocellulosic biomass) part II: carbohydrates. J Vis Exp (37):e1837. doi:10.3791/1837

  • Fujita M, Himmelspach R, Hocart CH, Williamson RE, Mansfield SD, Wasteneys GO (2011) Cortical microtubules optimize cell-wall crystallinity to drive unidirectional growth in Arabidopsis. Plant J 66(6):915–928

    Article  CAS  PubMed  Google Scholar 

  • Harris DM, Corbin K, Wang T, Gutierrez R, Bertolo AL, Petti C, Smilgies DM, Estevez JM, Bonetta D, Urbanowicz BR, Ehrhardt DW, Somerville CR, Rose JKC, Hong M, DeBolt S (2012) Cellulose microfibril crystallinity is reduced by mutating C-terminal transmembrane region residues CESA1(A903V) and CESA3(T942I) of cellulose synthase. Proc Natl Acad Sci USA 109(11):4098–4103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herth W (1983) Arrays of plasma-membrane rosettes involved in cellulose microfibril formation of spirogyra. Planta 159(4):347–356

    Article  CAS  PubMed  Google Scholar 

  • Hill JL, Hammudi MB, Tien M (2014) The Arabidopsis cellulose synthase complex: a proposed hexamer of CESA trimers in an equimolar stoichiometry. Plant Cell 26(12):4834–4842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hou S, Li L (2011) Rapid characterization of woody biomass digestibility and chemical composition using near infrared spectroscopy. J Integr Plant Biol 53(2):166–175

    Article  CAS  PubMed  Google Scholar 

  • Joshi CP, Thammannagowda S, Fujino T, Gou JQ, Avci U, Haigler CH, McDonnell LM, Mansfield SD, Mengesha B, Carpita NC (2011) Perturbation of wood cellulose synthesis causes pleiotropic effects in transgenic aspen. Mol plant 4(2):331–345

    Article  CAS  PubMed  Google Scholar 

  • Kern KA, Ewers FW, Telewski FW, Koehler L (2005) Mechanical perturbation affects conductivity, mechanical properties and aboveground biomass of hybrid poplars. Tree Physiol 25(10):1243–1251

    Article  PubMed  Google Scholar 

  • Kimura S, Laosinchai W, Itoh T, Cui X, Linder CR, Brown RM Jr (1999) Immunogold labeling of rosette terminal cellulose-synthesizing complexes in the vascular plant vigna angularis. Plant Cell 11(11):2075–2086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li L, Zhou Y, Cheng X, Sun J, Marita JM, Ralph J, Chiang VL (2003) Combinatorial modification of multiple lignin traits in trees through multigene cotransformation. Proc Natl Acad Sci USA 100(8):4939–4944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li S, Lei L, Yingling YG, Gu Y (2015) Microtubules and cellulose biosynthesis: the emergence of new players. Curr Opin Plant Biol 28:76–82

    Article  CAS  PubMed  Google Scholar 

  • Limpens E, Ramos J, Franken C, Raz V, Compaan B, Franssen H, Bisseling T, Geurts R (2004) RNA interference in Agrobacterium rhizogenes-transformed roots of Arabidopsis and Medicago truncatula. J Exp Bot 55(399):983

    Article  CAS  PubMed  Google Scholar 

  • Lionetto F, Del Sole R, Cannoletta D, Vasapollo G, Maffezzoli A (2012) Monitoring Wood Degradation during Weathering by Cellulose Crystallinity. Materials 5(10):1910–1922

    Article  CAS  Google Scholar 

  • Liu LF, Shang-Guan KK, Zhang BC, Liu XL, Yan MX, Zhang LJ, Shi YY, Zhang M, Qian Q, Li JY, Zhou YH (2013) Brittle culm1, a COBRA-Like protein, functions in cellulose assembly through binding cellulose microfibrils. PLoS Genet 9(8)

  • McFarlane HE, Doring A, Persson S (2014) The cell biology of cellulose synthesis. Annu Rev Plant Biol 65:69–94

    Article  CAS  PubMed  Google Scholar 

  • Mellerowicz EJ, Sundberg B (2008) Wood cell walls: biosynthesis, developmental dynamics and their implications for wood properties. Curr Opin Plant Biol 11(3):293–300

    Article  CAS  PubMed  Google Scholar 

  • Morgan JL, Strumillo J, Zimmer J (2013) Crystallographic snapshot of cellulose synthesis and membrane translocation. Nature 493(7431):181–186

    Article  CAS  PubMed  Google Scholar 

  • Müller M, Burghammer M, Sugiyama J (2006) Direct investigation of the structural properties of tension wood cellulose microfibrils using microbeam X-ray fibre diffraction. Holzforschung 60(5):474–479

    Article  Google Scholar 

  • Mutwil M, Debolt S, Persson S (2008) Cellulose synthesis: a complex complex. Curr Opin Plant Biol 11(3):252–257

    Article  CAS  PubMed  Google Scholar 

  • OSullivan AC (1997) Cellulose: the structure slowly unravels. Cellulose 4(3):173–207

    Article  CAS  Google Scholar 

  • Persson S, Paredez A, Carroll A, Palsdottir H, Doblin M, Poindexter P, Khitrov N, Auer M, Somerville CR (2007) Genetic evidence for three unique components in primary cell-wall cellulose synthase complexes in Arabidopsis. Proc Natl Acad Sci USA 104(39):15566–15571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saxena IM, Brown RM Jr (2005) Cellulose biosynthesis: current views and evolving concepts. Ann Bot 96(1):9–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Segal L, Creely J, Martin A, Conrad C (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29(10):786–794

    Article  CAS  Google Scholar 

  • Sjöström E (1993) Wood chemistry: fundamentals and applications, 2nd edn. Academic press, San Diego

    Google Scholar 

  • Somerville C (2006) Cellulose synthesis in higher plants. Annu Rev Cell Dev Biol 22:53–78

    Article  CAS  PubMed  Google Scholar 

  • Song D, Shen J, Li L (2010) Characterization of cellulose synthase complexes in Populus xylem differentiation. New Phytol 187:777–790

    Article  CAS  PubMed  Google Scholar 

  • Song D, Sun J, Li L (2014) Diverse roles of PtrDUF579 proteins in Populus and PtrDUF579-1 function in vascular cambium proliferation during secondary growth. Plant Mol Biol 85:601–602

    Article  CAS  PubMed  Google Scholar 

  • Stork J, Harris D, Griffiths J, Williams B, Beisson F, Li-Beisson Y, Mendu V, Haughn G, Debolt S (2010) CELLULOSE SYNTHASE9 serves a nonredundant role in secondary cell wall synthesis in Arabidopsis epidermal testa cells. Plant Physiol 153(2):580–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki S, Li L, Sun YH, Chiang VL (2006) The cellulose synthase gene superfamily and biochemical functions of xylem-specific cellulose synthase-like genes in Populus trichocarpa. Plant Physiol 142(3):1233–1245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor NG, Scheible WR, Cutler S, Somerville CR, Turner SR (1999) The irregular xylem3 locus of Arabidopsis encodes a cellulose synthase required for secondary cell wall synthesis. Plant Cell 11(5):769–780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor NG, Laurie S, Turner SR (2000) Multiple cellulose synthase catalytic subunits are required for cellulose synthesis in Arabidopsis. Plant Cell 12(12):2529–2540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor NG, Howells RM, Huttly AK, Vickers K, Turner SR (2003) Interactions among three distinct CesA proteins essential for cellulose synthesis. Proc Natl Acad Sci U S A 100(3):1450–1455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang T, Hong M (2016) Solid-state NMR investigations of cellulose structure and interactions with matrix polysaccharides in plant primary cell walls. J Exp Bot 67(2):503–514

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Elliott JE, Williamson RE (2008) Features of the primary wall CESA complex in wild type and cellulose-deficient mutants of Arabidopsis thaliana. J Exp Bot 59(10):2627–2637. doi:10.1093/Jxb/Ern125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Washusen R, Evans R (2001) The association between cellulose crystallite width and tension wood occurrence in Eucalyptus globulus. IAWA J 22(3):235–244

    Article  Google Scholar 

  • Watanabe Y, Meents MJ, McDonnell LM, Barkwill S, Sampathkumar A, Cartwright HN, Demura T, Ehrhardt DW, Samuels AL, Mansfield SD (2015) Visualization of cellulose synthases in Arabidopsis secondary cell walls. Science 350(6257):198–203

    Article  CAS  PubMed  Google Scholar 

  • Yu L, Sun J, Li L (2013) PtrCel9A6, an endo-1, 4-β-glucanase, is required for cell wall formation during xylem differentiation in Populus. Mol plant 6(6):1904–1917

    Article  CAS  PubMed  Google Scholar 

  • Zhong R, Morrison WH 3rd, Freshour GD, Hahn MG, Ye ZH (2003) Expression of a mutant form of cellulose synthase AtCesA7 causes dominant negative effect on cellulose biosynthesis. Plant Physiol 132(2):786–795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Xiaoyan Gao, Zhiping Zhang and Jiqin Li assistance for electron microscopic observation, Wenli Hu for GC–MS analysis. This work was financially supported by the National Natural Science Foundation of China (31130012, 31300500) and the Ministry of Science and Technology of China (2012CB114502).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laigeng Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Author contributions

WX and DS carried out the experiments, contributing equally to this work, JYS performed transformation and grew Populus trees, JHS carried out part of the experiments. WX, DS and LL designed the study, analyzed the data and wrote the manuscript. All authors have read and approved the final manuscript.

Additional information

W. Xi and D. Song have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11103_2016_570_MOESM1_ESM.tif

Figure S1 Identification of CesA complex from developing xylem. Different CesA complexes isolated from developing xylem were separated by two-dimensional BN/SDS-PAGE and immuno-analyzed using specific anti-CesA7, anti-CesA8, anti-CesA1, and anti-CesA3 antibodies. The predicted positions of CesA monomer (1), dimer (2), tetramer (4), and hexamer (6) complexes are indicated with number and arrow. (TIF 272 KB)

11103_2016_570_MOESM2_ESM.tif

Figure S2 Transgenic plants of CesA suppression in Populus. Representative transgenic plants of suppression of PtrCesA3D (A), PtrCesA7A(B), PtrCesA1A(C) and PtrCesA8A(D). Note: Transgenic plants of PtrCesA1A and PtrCesA8A suppression were generated at a different time from those of PtrCesA3D and PtrCesA7A suppression. (TIF 1109 KB)

Supplementary material 3 (PDF 9 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xi, W., Song, D., Sun, J. et al. Formation of wood secondary cell wall may involve two type cellulose synthase complexes in Populus . Plant Mol Biol 93, 419–429 (2017). https://doi.org/10.1007/s11103-016-0570-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-016-0570-8

Keywords

Navigation