Skip to main content
Log in

Transcriptome profiling of developmental leaf senescence in sorghum (Sorghum bicolor)

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Key message

This piece of the submission is being sent via mail.

Abstract

Leaf senescence is essential for the nutrient economy of crops and is executed by so-called senescence-associated genes (SAGs). Here we explored the monocot C4 model crop Sorghum bicolor for a holistic picture of SAG profiles by RNA-seq. Leaf samples were collected at four stages during developmental senescence, and in total, 3396 SAGs were identified, predominantly enriched in GO categories of metabolic processes and catalytic activities. These genes were enriched in 13 KEGG pathways, wherein flavonoid and phenylpropanoid biosynthesis and phenylalanine metabolism were overrepresented. Seven regions on Chromosomes 1, 4, 5 and 7 contained SAG ‘hotspots’ of duplicated genes or members of cupin superfamily involved in manganese ion binding and nutrient reservoir activity. Forty-eight expression clusters were identified, and the candidate orthologues of the known important senescence transcription factors such as ORE1, EIN3 and WRKY53 showed “SAG” expression patterns, implicating their possible roles in regulating sorghum leaf senescence. Comparison of developmental senescence with salt- and dark- induced senescence allowed for the identification of 507 common SAGs, 1996 developmental specific SAGs as well as 176 potential markers for monitoring senescence in sorghum. Taken together, these data provide valuable resources for comparative genomics analyses of leaf senescence and potential targets for the manipulation of genetic improvement of Sorghum bicolor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

cDNA:

Complementary DNA

DEGs:

Differentially expressed genes

DGE:

Digital gene expression

ES:

Early senescence

FDR:

False discovery rate

FPKM:

Fragment per kilo base per million mapped fragment

GO:

Gene ontology

KEGG:

Kyoto encyclopedia of genes and genomes

LS:

Late senescence

MS:

Middle senescence

NGS:

Next-generation sequencing

QTL:

Quantitative trait locus

SAGs:

Senescence-associated genes

TF:

Transcription factor

TFBS:

Transcription factor binding site

References

  • Abeles FB, Dunn LJ, Morgens P, Callahan A, Dinterman RE, Schmidt J (1988) Induction of 33-kD and 60-kD Peroxidases during Ethylene-induced senescence of cucumber cotyledons. Plant Physiol 87:609–615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • An FY, Zhao QO, Ji YS, Li WY, Jiang ZQ, Yu XC, Zhang C, Han Y, He WR, Liu YD, Zhang SQ, Ecker JR, Guo HW (2010) Ethylene-induced stabilization of ETHYLENE INSENSITIVE3 and EIN3-LIKE1 Is Mediated by Proteasomal Degradation of EIN3 Binding F-Box 1 and 2 that requires EIN2 in Arabidopsis. Plant Cell 22:2384–2401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anami SE, Zhang L-M, Xia Y, Zhang Y-M, Liu Z-Q, Jing H-C (2015a) Sweet sorghum ideotypes: genetic improvement of the biofuel syndrome. Food Energ Secur 4(3):159–177

  • Anami SE, Zhang LM, Xia Y, Zhang YM, Liu ZQ, Jing HC (2015b) Sweet sorghum ideotypes: genetic improvement of stress tolerance. Food Energ Secur 4:3–24

  • Andersson A, Keskitalo J, Sjodin A, Bhalerao R, Sterky F, Wissel K, Tandre K, Aspeborg H, Moyle R, Ohmiya Y, Bhalerao R, Brunner A, Gustafsson P, Karlsson J, Lundeberg J, Nilsson O, Sandberg G, Strauss S, Sundberg B, Uhlen M, Jansson S, Nilsson P (2004) A transcriptional timetable of autumn senescence Genome Biol 5(4):R24

    Article  PubMed  PubMed Central  Google Scholar 

  • Balazadeh S, Siddiqui H, Allu AD, Matallana-Ramirez LP, Caldana C, Mehrnia M, Zanor MI, Kohler B, Mueller-Roeber B (2010) A gene regulatory network controlled by the NAC transcription factor ANAC092/AtNAC2/ORE1 during salt-promoted senescence. Plant J 62:250–264

    Article  CAS  PubMed  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate – a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol 57:289–300

  • Bleecker AB (1998) The evolutionary basis of leaf senescence: method to the madness? Curr Opin Plant Biol 1:73–78

    Article  CAS  PubMed  Google Scholar 

  • Breeze E, Harrison E, McHattie S, Hughes L, Hickman R, Hill C, Kiddle S, Kim YS, Penfold CA, Jenkins D, Zhang CJ, Morris K, Jenner C, Jackson S, Thomas B, Tabrett A, Legaie R, Moore JD, Wild DL, Ott S, Rand D, Beynon J, Denby K, Mead A, Buchanan-Wollaston V (2011) High-Resolution temporal profiling of transcripts during Arabidopsis leaf senescence reveals a distinct chronology of processes and regulation. Plant Cell 23:873–894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown DE, Rashotte AM, Murphy AS, Normanly J, Tague BW, Peer WA, Taiz L, Muday GK (2001) Flavonoids act as negative regulators of auxin transport in vivo in Arabidopsis. Plant Physiol 126:524–535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buchanan-Wollaston V, Page T, Harrison E, Breeze E, Lim PO, Nam HG, Lin JF, Wu SH, Swidzinski J, Ishizaki K, Leaver CJ (2005) Comparative transcriptome analysis reveals significant differences in gene expression and signalling pathways between developmental and dark/starvation-induced senescence in Arabidopsis. Plant J 42:567–585

    Article  CAS  PubMed  Google Scholar 

  • Calvino M, Messing J (2012) Sweet sorghum as a model system for bioenergy crops. Curr Opin Biotechnol 23:323–329

    Article  CAS  PubMed  Google Scholar 

  • Chang KN, Zhong S, Weirauch MT, Hon G, Pelizzola M, Li H, Huang SS, Schmitz RJ, Urich MA, Kuo D, Nery JR, Qiao H, Yang A, Jamali A, Chen H, Ideker T, Ren B, Bar-Joseph Z, Hughes TR, Ecker JR (2013) Temporal transcriptional response to ethylene gas drives growth hormone cross-regulation in Arabidopsis. ELife 2:e00675

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen G-H, Liu C-P, Chen S-CG, Wang L-C (2012a) Role of ARABIDOPSIS A-FIFTEEN in regulating leaf senescence involves response to reactive oxygen species and is dependent on ETHYLENE INSENSITIVE2. J Exp Bot 63:275–292

  • Chen JH, Jiang HW, Hsieh EJ, Chen HY, Chien CT, Hsieh HL, Lin TP (2012b) Drought and salt stress tolerance of an Arabidopsis Glutathione S-Transferase U17 knockout mutant are attributed to the combined effect of Glutathione and Abscisic Acid. Plant Physiol 158:340–351

  • Chen QF, Xu L, Tan WJ, Chen L, Qi H, Xie LJ, Chen MX, Liu BY, Yu LJ, Yao N, Zhang JH, Shu W, Xiao S (2015) Disruption of the Arabidopsis defense regulator Genes SAG101, EDS1, and PAD4 confers enhanced freezing tolerance. Mol Plant 8:1536–1549

    Article  CAS  PubMed  Google Scholar 

  • Crasta OR, Xu WW, Rosenow DT, Mullet J, Nguyen HT (1999) Mapping of post-flowering drought resistance traits in grain sorghum: association between QTLs influencing premature senescence and maturity. Mol Gen Genet 262:579–588

    Article  CAS  PubMed  Google Scholar 

  • De Michele R, Formentin E, Todesco M, Toppo S, Carimi F, Zottini M, Barizza E, Ferrarini A, Delledonne M, Fontana P, Lo Schiavo F (2009) Transcriptome analysis of Medicago truncatula leaf senescence: similarities and differences in metabolic and transcriptional regulations as compared with Arabidopsis, nodule senescence and nitric oxide signalling. New Phytol 181:563–575

    Article  PubMed  Google Scholar 

  • Deng Z, Zhang X, Tang W, Oses-Prieto JA, Suzuki N, Gendron JM, Chen H, Guan S, Chalkley RJ, Peterman TK, Burlingame AL, Wang ZY (2007) A proteomics study of brassinosteroid response in Arabidopsis. Mol Cell Proteomics 6:2058–2071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diourte M, Starr JL, Jeger MJ, Stack JP, Rosenow DT (1995) Charcoal Rot (Macrophomina-Phaseolina) Resistance and the effects of water-stress on disease development in Sorghum. Plant Pathol 44:196–202

    Article  Google Scholar 

  • Du Z, Zhou X, Ling Y, Zhang Z, Su Z (2010) agriGO: a GO analysis toolkit for the agricultural community. Nucleic Acids Res 38:W64–W70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dugas DV, Monaco MK, Olsen A, Klein RR, Kumari S, Ware D, Klein PE (2011) Functional annotation of the transcriptome of Sorghum bicolor in response to osmotic stress and abscisic acid. BMC Genomics 12:514–534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Engel W, Hof JO, Wolf U (1970) [Gene duplication by polyploid evolution: the isoenzyme of the sorbitol dehydrogenase in herring- and salmon-like fishes (Isospondyli)]. Humangenetik 9:157–163

    CAS  PubMed  Google Scholar 

  • FAO R (1995) Sorghum and millets in human nutrition. FAO Food Nutrition Series 27:16–19

  • Feinbaum RL, Ausubel FM (1988) Transcriptional regulation of the Arabidopsis thaliana chalcone synthase gene. Mol Cell Biol 8:1985–1992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gregersen PL, Holm PB (2007) Transcriptome analysis of senescence in the flag leaf of wheat (Triticum aestivum L.) Plant Biotechnol J 5:192–206

    Article  CAS  PubMed  Google Scholar 

  • Gregersen PL, Holm PB, Krupinska K (2008) Leaf senescence and nutrient remobilisation in barley and wheat. Plant Biol 10:37–49

    Article  CAS  PubMed  Google Scholar 

  • Grotewold E, Drummond BJ, Bowen B, Peterson T (1994) The myb-homologous P gene controls phlobaphene pigmentation in maize floral organs by directly activating a flavonoid biosynthetic gene subset. Cell 76:543–553

    Article  CAS  PubMed  Google Scholar 

  • Gu Z, Steinmetz LM, Gu X, Scharfe C, Davis RW, Li WH (2003) Role of duplicate genes in genetic robustness against null mutations. Nature 421:63–66

    Article  CAS  PubMed  Google Scholar 

  • Guo YF, Gan SS (2006) AtNAP, a NAC family transcription factor, has an important role in leaf senescence. Plant J 46:601–612

    Article  CAS  PubMed  Google Scholar 

  • Guo Y, Cai Z, Gan S (2004) Transcriptome of Arabidopsis leaf senescence. Plant Cell Environ 27:521–549

    Article  CAS  Google Scholar 

  • Haussmann BIG, Mahalakshmi V, Reddy BVS, Seetharama N, Hash CT, Geiger HH (2002) QTL mapping of stay-green in two sorghum recombinant inbred populations. Theor Appl Genet 106:133–142

    CAS  PubMed  Google Scholar 

  • He Y, Gan S (2002) A gene encoding an acyl hydrolase is involved in leaf senescence in Arabidopsis. Plant Cell 14:805–815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He Y, Fukushige H, Hildebrand DF, Gan S (2002) Evidence supporting a role of jasmonic acid in Arabidopsis leaf senescence. Plant Physiol 128:876–884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heard NA, Holmes CC, Stephens DA (2006) A Quantitative Study of Gene Regulation Involved in the Immune Response of Anopheline Mosquitoes. J Amer Statistical Assoc 101:18–29

    Article  CAS  Google Scholar 

  • Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Res 27:297–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hinderhofer K, Zentgraf U (2001) Identification of a transcription factor specifically expressed at the onset of leaf senescence. Planta 213:469–473

    Article  CAS  PubMed  Google Scholar 

  • Izawa T, Foster R, Chua NH (1993) Plant bZIP protein DNA binding specificity. J Mol Biol 230:1131–1144

    Article  CAS  PubMed  Google Scholar 

  • Jing HC, Sturre MJG, Hille J, Dijkwel PP (2002) Arabidopsis onset of leaf death mutants identify a regulatory pathway controlling leaf senescence. Plant J 32:51–63

    Article  CAS  PubMed  Google Scholar 

  • Kanehisa M (2002) The KEGG database. Novart Found Symp 247:91–103

    Article  CAS  Google Scholar 

  • Kersey PJ, Allen JE, Christensen M, Davis P, Falin LJ, Grabmueller C, Hughes DST, Humphrey J, Kerhornou A, Khobova J, Langridge N, McDowall MD, Maheswari U, Maslen G, Nuhn M, Ong CK, Paulini M, Pedro H, Toneva I, Tuli MA, Walts B, Williams G, Wilson D, Youens-Clark K, Monaco MK, Stein J, Wei XH, Ware D, Bolser DM, Howe KL, Kulesha E, Lawson D, Staines DM (2014) Ensembl Genomes 2013: scaling up access to genome-wide data. Nucleic Acids Res 42:D546–D552

    Article  CAS  PubMed  Google Scholar 

  • Kim JH, Woo HR, Kim J, Lim PO, Lee IC, Choi SH, Hwang D, Nam HG (2009) Trifurcate Feed-Forward Regulation of Age-Dependent Cell Death Involving miR164 in Arabidopsis. Science 323:1053–1057

    Article  CAS  PubMed  Google Scholar 

  • Kinsella RJ, Kahari A, Haider S, Zamora J, Proctor G, Spudich G, Almeida-King J, Staines D, Derwent P, Kerhornou A, Kersey P, Flicek P (2011) Ensembl BioMarts: a hub for data retrieval across taxonomic space Database-Oxford

  • Konishi M, Yanagisawa S (2008) Ethylene signaling in Arabidopsis involves feedback regulation via the elaborate control of EBF2 expression by EIN3. Plant J 55:821–831

    Article  CAS  PubMed  Google Scholar 

  • Lee S, Seo PJ, Lee HJ, Park CM (2012) A NAC transcription factor NTL4 promotes reactive oxygen species production during drought-induced leaf senescence in Arabidopsis. Plant J 70:831–844

    Article  CAS  PubMed  Google Scholar 

  • Leopold AC (1961) Senescence in plant development. Science 134:1727–1732

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Peng J, Wen X, Guo H (2012) Gene network analysis and functional studies of senescence-associated genes reveal novel regulators of Arabidopsis leaf senescence. J Integr Plant Biol 54:526–539

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Zhao Y, Liu X, Peng J, Guo H, Luo J (2014) LSD 2.0: an update of the leaf senescence database. Nucleic Acids Res 42:D1200–D1205

    Article  CAS  PubMed  Google Scholar 

  • Lin JF, Wu SH (2004) Molecular events in senescing Arabidopsis leaves. Plant J 39:612–628

    Article  CAS  PubMed  Google Scholar 

  • Lin M, Pang C, Fan S, Song M, Wei H, Yu S (2015) Global analysis of the Gossypium hirsutum L. Transcriptome during leaf senescence by RNA-Seq. BMC Plant Biol 15:43

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu L, Zhou Y, Zhou G, Ye RJ, Zhao L, Li XH, Lin YJ (2008) Identification of early senescence-associated genes in rice flag leaves. Plant Mol Biol 67:37–55

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Long SP, Zhu XG, Naidu SL, Ort DR (2006) Can improvement in photosynthesis increase crop yields? Plant Cell Environ 29:315–330

    Article  CAS  PubMed  Google Scholar 

  • Marrs KA (1996) The Functions and Regulation of Glutathione S-Transferases in Plants. Annu Rev Plant Physiol Plant Mol Biol 47:127–158

    Article  CAS  PubMed  Google Scholar 

  • Masclaux-Daubresse C, Chardon F (2011) Exploring nitrogen remobilization for seed filling using natural variation in Arabidopsis thaliana. J Exp Bot 62:2131–2142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Masclaux-Daubresse C, Reisdorf-Cren M, Orsel M (2008) Leaf nitrogen remobilisation for plant development and grain filling Plant Biol (Stuttg) 10(Suppl 1):23–36

    Article  CAS  Google Scholar 

  • Miao Y, Laun T, Zimmermann P, Zentgraf U (2004) Targets of the WRKY53 transcription factor and its role during leaf senescence in Arabidopsis. Plant Mol Biol 55:853–867

    Article  CAS  PubMed  Google Scholar 

  • Mizuno H, Kawahigashi H, Kawahara Y, Kanamori H, Ogata J, Minami H, Itoh T, Matsumoto T (2012) Global transcriptome analysis reveals distinct expression among duplicated genes during sorghum-Bipolaris sorghicola interaction. BMC Plant Biol 12:121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moons A (2003) Osgstu3 and osgtu4, encoding tau class glutathione S-transferases, are heavy metal- and hypoxic stress-induced and differentially salt stress-responsive in rice roots. FEBS Lett 553:427–432

    Article  CAS  PubMed  Google Scholar 

  • Nagarajan VK, Jain A, Poling MD, Lewis AJ, Raghothama KG, Smith AP (2011) Arabidopsis Pht1;5 Mobilizes Phosphate between Source and Sink Organs and Influences the Interaction between Phosphate Homeostasis and Ethylene Signaling. Plant Physiol 156:1149–1163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noodén LD (1988) 1-The Phenomena of Senescence and Aging. In: Noodén LD, Leopold AC (eds) Senescence and Aging in Plants. Academic Press, pp 1–50

  • Olsen AN, Ernst HA, Lo Leggio L, Skriver K (2005) DNA-binding specificity and molecular functions of NAC transcription factors. Plant Sci 169:785–797

    Article  CAS  Google Scholar 

  • Ougham H, Hortensteiner S, Armstead I, Donnison I, King I, Thomas H, Mur L (2008) The control of chlorophyll catabolism and the status of yellowing as a biomarker of leaf senescence. Plant Biol 10:4–14

    Article  CAS  PubMed  Google Scholar 

  • Palmer NA, Donze-Reiner T, Horvath D, Heng-Moss T, Waters B, Tobias C, Sarath G (2015) Switchgrass (Panicum virgatum L) flag leaf transcriptomes reveal molecular signatures of leaf development, senescence, and mineral dynamics. Funct Integr Genomics 15:1–16

    Article  CAS  PubMed  Google Scholar 

  • Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H, Haberer G, Hellsten U, Mitros T, Poliakov A, Schmutz J, Spannagl M, Tang H, Wang X, Wicker T, Bharti AK, Chapman J, Feltus FA, Gowik U, Grigoriev IV, Lyons E, Maher CA, Martis M, Narechania A, Otillar RP, Penning BW, Salamov AA, Wang Y, Zhang L, Carpita NC, Freeling M, Gingle AR, Hash CT, Keller B, Klein P, Kresovich S, McCann MC, Ming R, Peterson DG, Mehboob ur R, Ware D, Westhoff P, Mayer KFX, Messing J, Rokhsar DS (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457:551–556

    Article  CAS  PubMed  Google Scholar 

  • Patterson SE, Bleecker AB (2004) Ethylene-dependent and -independent processes associated with floral organ abscission in Arabidopsis. Plant Physiol 134:194–203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rauf M, Arif M, Dortay H, Matallana-Ramirez LP, Waters MT, Gil Nam H, Lim PO, Mueller-Roeber B, Balazadeh S (2013) ORE1 balances leaf senescence against maintenance by antagonizing G2-like-mediated transcription. EMBO Rep 14:382–388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richards RA (2000) Selectable traits to increase crop photosynthesis and yield of grain crops J Exp Bot 51 Spec No:447–458

    Article  PubMed  Google Scholar 

  • Rosenow DT, Quisenberry JE, Wendt CW, Clark LE (1983) Drought tolerant sorghum and cotton germplasm. Agr Water Manage 7:207–222

    Article  Google Scholar 

  • Sanchez AC, Subudhi PK, Rosenow DT, Nguyen HT (2002) Mapping QTLs associated with drought resistance in sorghum (Sorghum bicolor L. Moench). Plant Mol Biol 48:713–726

    Article  CAS  PubMed  Google Scholar 

  • Sappl PG, Carroll AJ, Clifton R, Lister R, Whelan J, Harvey Millar A, Singh KB (2009) The Arabidopsis glutathione transferase gene family displays complex stress regulation and co-silencing multiple genes results in altered metabolic sensitivity to oxidative stress. Plant J 58:53–68

    Article  CAS  PubMed  Google Scholar 

  • Schommer C, Palatnik JF, Aggarwal P, Chetelat A, Cubas P, Farmer EE, Nath U, Weigel D (2008) Control of jasmonate biosynthesis and senescence by miR319 targets. PLoS Biol 6:e230

    Article  PubMed  PubMed Central  Google Scholar 

  • Seltmann MA, Stingl NE, Lautenschlaeger JK, Krischke M, Mueller MJ, Berger S (2010) Differential Impact of Lipoxygenase 2 and Jasmonates on Natural and Stress-Induced Senescence in Arabidopsis. Plant Physiol 152:1940–1950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stead AD, Malcolm P, Buchanan-Wollaston V, Thomas B, Breeze E, Laarhoven LJ, Harren F, Rogers HJ, Wagstaff C (2003) Ethylene and Alstroemeria flowers—A grey area. Biol Biotech Plant Hormone Ethylene iii 349:340–344

    CAS  Google Scholar 

  • Subudhi PK, Rosenow DT, Nguyen HT (2000) Quantitative trait loci for the stay green trait in sorghum (Soughum bicolor L. Moench): consistency across genetic backgrounds and environments. Theor Appl Genet 101:733–741

    Article  CAS  Google Scholar 

  • Tao YZ, Henzell RG, Jordan DR, Butler DG, Kelly AM, McIntyre CL (2000) Identification of genomic regions associated with stay green in sorghum by testing RILs in multiple environments. Theor Appl Genet 100:1225–1232

    Article  CAS  Google Scholar 

  • Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, Wold BJ, Pachter L (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation Nat. Biotech 28:511–515

    CAS  Google Scholar 

  • Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H (2012) Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc 7:562–578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van den Heuvel S, Dyson NJ (2008) Conserved functions of the pRB and E2F families. Nat Rev Mol Cell Biol 9:713–724

    Article  PubMed  Google Scholar 

  • Van der Graaff E, Schwacke R, Schneider A, Desimone M, Flugge UI, Kunze R (2006) Transcription analysis of arabidopsis membrane transporters and hormone pathways during developmental and induced leaf senescence. Plant Physiol 141:776–792

    Article  PubMed  PubMed Central  Google Scholar 

  • Vandepoele K, Vlieghe K, Florquin K, Hennig L, Beemster GT, Gruissem W, Van de Peer Y, Inze D, De Veylder L (2005) Genome-wide identification of potential plant E2F target genes. Plant Physiol 139:316–328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang T-T, Ren Z-J, Liu Z-Q, Feng X, Guo R-Q, Li B-G, Li L-G, Jing H-C (2014) SbHKT1;4, a member of the high-affinity potassium transporter gene family from Sorghum bicolor, functions to maintain optimal Na+/K+ balance under Na+ stress. J Integr Plant Biol 56:315–332

    Article  CAS  PubMed  Google Scholar 

  • Woo HR, Chung KM, Park JH, Oh SA, Ahn T, Hong SH, Jang SK, Nam HG (2001) ORE9, an F-box protein that regulates leaf senescence in Arabidopsis. Plant Cell 13:1779–1790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu XY, Kuai BK, Jia JZ, Jing HC (2012) Regulation of Leaf Senescence and Crop Genetic Improvement. J Integr Plant Biol 54:936–952

    Article  CAS  PubMed  Google Scholar 

  • Xie C, Mao X, Huang J, Ding Y, Wu J, Dong S, Kong L, Gao G, Li CY, Wei L (2011) KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Res 39:W316–W322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu W, Subudhi PK, Crasta OR, Rosenow DT, Mullet JE, Nguyen HT (2000) Molecular mapping of QTLs conferring stay-green in grain sorghum (Sorghum bicolor L. Moench). Genome 43:461–469

    Article  CAS  PubMed  Google Scholar 

  • Yang T, Poovaiah BW (2002) A calmodulin-binding/CGCG box DNA-binding protein family involved in multiple signaling pathways in plants. J Biol Chem 277:45049–45058

    Article  CAS  PubMed  Google Scholar 

  • Yang JC, Zhang JH (2006) Grain filling of cereals under soil drying. New Phytol 169:223–236

    Article  CAS  PubMed  Google Scholar 

  • Yazawa T, Kawahigashi H, Matsumoto T, Mizuno H (2013) Simultaneous transcriptome analysis of Sorghum and Bipolaris sorghicola by using RNA-seq in combination with de novo transcriptome assembly. PLoS One 8:e62460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoo SD, Cho YH, Tena G, Xiong Y, Sheen J (2008) Dual control of nuclear EIN3 by bifurcate MAPK cascades in C2H4 signalling. Nature 451:789–795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zentgraf U, Laun T, Miao Y (2010) The complex regulation of WRKY53 during leaf senescence of Arabidopsis thaliana. Eur J Cell Biol 89:133–137

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Jin J, Tang L, Zhao Y, Gu X, Gao G, Luo J (2011) PlantTFDB 2.0: update and improvement of the comprehensive plant transcription factor database. Nucleic Acids Res 39:D1114–D1117

    Article  CAS  PubMed  Google Scholar 

  • Zhang T, Zhao X, Wang W, Huang L, Liu X, Zong Y, Zhu L, Yang D, Fu B, Li Z (2014a) Deep transcriptome sequencing of rhizome and aerial-shoot in Sorghum propinquum. Plant Mol Biol 84:315–327

  • Zhang WY, Xu YC, Li WL, Yang L, Yue X, Zhang XS, Zhao XY (2014b) Transcriptional analyses of natural leaf senescence in maize. PLoS One 9:e115617

  • Zheng LY, Guo XS, He B, Sun LJ, Peng Y, Dong SS, Liu TF, Jiang SY, Ramachandran S, Liu CM, Jing HC (2011) Genome-wide patterns of genetic variation in sweet and grain sorghum (Sorghum bicolor) Genome Biol 12.

  • Zhong S, Zhao M, Shi T, Shi H, An F, Zhao Q, Guo H (2009) EIN3/EIL1 cooperate with PIF1 to prevent photo-oxidation and to promote greening of Arabidopsis seedlings. Proc Natl Acad Sci USA 106:21431–21436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou C, Gan S (2010) Senescence. In: Pua EC, Davey MR (eds) Plant Dev Biol—Biotechnological Perspectives. Springer Berlin Heidelberg, pp 151–169

  • Zhu Z, An F, Feng Y, Li P, Xue L, A M, Jiang Z, Kim J-M, To TK, Li W, Zhang X, Yu Q, Dong Z, Chen W-Q, Seki M, Zhou J-M, Guo H (2011) Derepression of ethylene-stabilized transcription factors (EIN3/EIL1) mediates jasmonate and ethylene signaling synergy in Arabidopsis. Proc Natl Acad Sci USA 108(30):12539–12544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Members of Hai-Chun Jing’s lab are acknowledged for stimulating discussion on this project. This work was partially funded by grants to Hai-Chun Jing from National Natural Science Foundation of China (31271797, 30970252 and 31471570) and Ministry of Science and Technology of the People’s Republic of China (2013BAD22B01, 2015BAD15B03). We are also grateful to the handling editor and two anonymous reviewers for their critical comments and useful suggestions on a previous version of the manuscript.

Author contributions

Hai-Chun Jing designed and conceived the research, Wei-Juan Hu and Li-dong Wang performed the experiments, Xiao-yuan Wu and Hong Luo analysed the sequencing data, Yan Xia, Yi Zhao, Li-min Zhang, Jing-Chu Luo and Hai-Chun Jing assisted data analysing and gave thoughtful discussion. Xiao-Yuan Wu, Hong Luo and Hai-Chun Jing wrote the whole paper with feedback from Jing-Chu Luo. Xiao-Yuan Wu, Wei-Juan Hu, and Hong Luo contributed equally to the paper.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jing-Chu Luo or Hai-Chun Jing.

Additional information

Xiao-Yuan Wu, Wei-Juan Hu and Hong Luo have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 1294 KB)

Supplementary material 2 (XLSX 37 KB)

Supplementary material 3 (XLSX 151 KB)

Supplementary material 4 (XLSX 50 KB)

Supplementary material 5 (XLSX 789 KB)

11103_2016_532_MOESM6_ESM.eps

ESM Fig. S1 Conditions shared and specific SAGs. A Venn diagram showing the numbers of SAGs shared by and specific to developmental, dark- and salt-induced senescence, respectively. DSAGs represents developmental specific SAGs (EPS 21034 KB)

ESM Fig. S2 Number of expressed genes of different expression value regions in each stage (EPS 3040 KB)

11103_2016_532_MOESM8_ESM.eps

ESM Fig. S3 Number of SAGs contain three kinds of binding motifs. Candidate targets of transcription factors were identified by searching transcription factors binding sites in 2 kb promoter region of each sorghum gene (EPS 20871 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, XY., Hu, WJ., Luo, H. et al. Transcriptome profiling of developmental leaf senescence in sorghum (Sorghum bicolor). Plant Mol Biol 92, 555–580 (2016). https://doi.org/10.1007/s11103-016-0532-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-016-0532-1

Keywords

Navigation