Skip to main content

Advertisement

Log in

Differential growth responses of Brachypodium distachyon genotypes to inoculation with plant growth promoting rhizobacteria

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Plant growth promoting rhizobacteria (PGPR) can associate and enhance the growth of important crop grasses. However, in most cases, the molecular mechanisms responsible for growth promotion are not known. Such research could benefit by the adoption of a grass model species that showed a positive response to bacterial inoculation and was amenable to genetic and molecular research methods. In this work we inoculated different genotypes of the model grass Brachypodium distachyon with two, well-characterized PGPR bacteria, Azospirillum brasilense and Herbaspirillum seropedicae, and evaluated the growth response. Plants were grown in soil under no nitrogen or with low nitrogen (i.e., 0.5 mM KNO3). A variety of growth parameters (e.g., shoot height, root length, number of lateral roots, fresh and dry weight) were measured 35 days after inoculation. The data indicate that plant genotype plays a very important role in determining the plant response to PGPR inoculation. A positive growth response was observed with only four genotypes grown under no nitrogen and three genotypes tested under low nitrogen. However, in contrast, relatively good root colonization was seen with most genotypes, as measured by drop plate counting and direct, microscopic examination of roots. In particular, the endophytic bacteria H. seropedicae showed strong epiphytic and endophytic colonization of roots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Amaral FP et al (2014) Gene expression analysis of maize seedlings (DKB240 variety) inoculated with plant growth promoting bacterium Herbaspirillum seropedicae. Symbiosis 62:41–50

    Article  CAS  Google Scholar 

  • Babalola OO (2010) Beneficial bacteria of agricultural importance. Biotechnol Lett 32(11):1559–1570

    Article  CAS  PubMed  Google Scholar 

  • Baldani JI et al (1986) Characterization of Herbaspirillum seropedicae gen-nov, sp-nov, a root-associated nitrogen-fixing bacterium. Int J Syst Bacteriol 36(1):86–93

    Article  CAS  Google Scholar 

  • Bashan Y, Holguin G, de-Bashan LE (2004) Azospirillum-plant relationships: physiological, molecular, agricultural, and environmental advances (1997–2003). Can J Microbiol 50(8):521–577

    Article  CAS  PubMed  Google Scholar 

  • Berg G, Smalla K (2009) Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiol Ecol 68(1):1–13

    Article  CAS  PubMed  Google Scholar 

  • Bluemke A et al (2015) Reduced susceptibility to Fusarium head blight in Brachypodium distachyon through priming with the Fusarium mycotoxin deoxynivalenol. Mol Plant Pathol 16(5):472–483

    Article  CAS  Google Scholar 

  • Bodenhausen N, Bortfeld-Miller M, Ackermann M, Vorholt JA (2014) A synthetic community approach reveals plant genotypes affecting the phyllosphere microbiota. PLoS Genet 10(4):e1004283. doi:10.1371/journal.pgen.100428

    Article  PubMed  PubMed Central  Google Scholar 

  • Brkljacic J et al (2011) Brachypodium as a model for the grasses: today and the future. Plant Physiol 157(1):3–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brusamarello-Santos LCC (2013) Análise do transcriptoma total de raízes de plântulas de arroz (Oryza sativa L.) colonizadas por Herbaspirillum seropedicae SmR1. Dissertation. Federal University of Curitiba, Brazil

  • Brusamarello-Santos LCC et al (2012) Differential gene expression of rice roots inoculated with the diazotroph Herbaspirillum seropedicae. Plant Soil 356(1–2):113–125

    Article  CAS  Google Scholar 

  • Brutnell TP et al (2010) Setaria viridis: a model for C-4 photosynthesis. Plant Cell 22(8):2537–2544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brutnell T, Bennetzen J, Vogel J (2015) Brachypodium distachyon and Setaria viridis: model genetic systems for the grasses. Annu Rev Plant Biol 66:465–485

    Article  CAS  PubMed  Google Scholar 

  • Camilios-Neto D et al (2014) Dual RNA-seq transcriptional analysis of wheat roots colonized by Azospirillum brasilense reveals up-regulation of nutrient acquisition and cell cycle genes. BMC Genom 15(378):1471–2164

    Google Scholar 

  • Dobbelaere S et al (2001) Responses of agronomically important crops to inoculation with Azospirillum. Aust J Plant Physiol 28(9):871–879

    Google Scholar 

  • Dobbelaere S, Vanderleyden J, Okon Y (2003) Plant growth-promoting effects of diazotrophs in the rhizosphere. Crit Rev Plant Sci 22(2):107–149

    Article  CAS  Google Scholar 

  • Dobereiner J, Marriel IE, Nery M (1976) Ecological distribution of Spirillum-Lipoferum Beijerinck. Can J Microbiol 22(10):1464–1473

    Article  CAS  PubMed  Google Scholar 

  • Draper J et al (2001) Brachypodium distachyon. A new model system for functional genomics in grasses. Plant Physiol 127(4):1539–1555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferrari CS et al (2014) Expressed proteins of Herbaspirillum seropedicae in maize (DKB240) Roots-bacteria interaction revealed using proteomics. Appl Biochem Biotech 174(6):2267–2277

    Article  CAS  Google Scholar 

  • Gagne-Bourque F et al (2015) Accelerated growth rate and increased drought stress resilience of the model grass Brachypodium distachyon colonized by Bacillus subtilis B26. PLoS ONE 10(6):e0130456. doi:10.1371/journal.pone.0130456

    Article  PubMed  PubMed Central  Google Scholar 

  • Germida JJ, Siciliano SD (2001) Taxonomic diversity of bacteria associated with the roots of modern, recent and ancient wheat cultivars. Biol Fertil Soils 33(5):410–415

    Article  Google Scholar 

  • Haney C et al (2015) Associations with rhizosphere bacteria can confer an adaptive advantage to plants. Nat Plants 1:1–9. doi:10.1038/nplants.2015.51

    Google Scholar 

  • James EK, Olivares FL (1998) Infection and colonization of sugar cane and other graminaceous plants by endophytic diazotrophs. Crit Rev Plant Sci 17(1):77–119

    Article  Google Scholar 

  • James EK et al (2002) Infection and colonization of rice seedlings by the plant growth-promoting bacterium Herbaspirillum seropedicae Z67. Mol Plant Microbe Interact 15(9):894–906

    Article  CAS  PubMed  Google Scholar 

  • Klassen G et al (1997) Effect of nitrogen compounds on nitrogenase activity in Herbaspirillum seropedicae SMR1. Can J Microbiol 43(9):887–891

    Article  CAS  Google Scholar 

  • Machado HB et al (1991) Excretion of ammonium by Azospirillum brasilense mutants resistant to ethylenediamine. Can J Microbiol 37:549–553

    Article  CAS  Google Scholar 

  • Mitter B et al (2013) Advances in elucidating Beneficial interactions between plants, soil, and bacteria. Adv Agron 121:381–445

    Article  CAS  Google Scholar 

  • Monteiro RA et al (2008) Early colonization pattern of maize (Zea mays L. Poales, Poaceae) roots by Herbaspirillum seropedicae (Burkholderiales, Oxalobacteraceae). Genet Mol Biol 31(4):932–937

    Article  Google Scholar 

  • Moutia JFY et al (2010) Plant growth promotion by Azospirillum sp. in sugarcane is influenced by genotype and drought stress. Plant Soil 337(1–2):233–242

    Article  CAS  Google Scholar 

  • Pacheco-Villalobos D, Hardtke CS (2012) Natural genetic variation of root system architecture from Arabidopsis to Brachypodium: towards adaptive value. Philos Trans R Soc B Biol Sci 367(1595):1552–1558

    Article  CAS  Google Scholar 

  • Pankievicz VCS et al (2015) Robust biological nitrogen fixation in a model grass-bacterial association. Plant J 81:907–919

    Article  CAS  PubMed  Google Scholar 

  • Pereira TP et al (2014) Real-time PCR quantification of the plant growth promoting bacteria Herbaspirillum seropedicae Strain SmR1 in Maize Roots. Mol Biotechnol 56(7):660–670

    CAS  PubMed  Google Scholar 

  • Philippot L et al (2013) Going back to the roots: the microbial ecology of the rhizosphere. Nat Rev Microbiol 11(11):789–799

    Article  CAS  PubMed  Google Scholar 

  • Reinhold-Hurek B, Hurek T (2011) Living inside plants: bacterial endophytes. Curr Opin Plant Biol 14(4):435–443

    Article  PubMed  Google Scholar 

  • Richardson AE et al (2009) Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 321(1–2):305–339

    Article  CAS  Google Scholar 

  • Sandoya GV, Buanafina MMO (2014) Differential responses of Brachypodium distachyon genotypes to insect and fungal pathogens. Physiol Mol Plant Pathol 85:53–64

    Article  Google Scholar 

  • Santi C, Bogusz D, Franche C (2013) Biological nitrogen fixation in non-legume plants. Ann Bot 111:743–767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt MA et al (2011) Evidence for the endophytic colonization of Phaseolus vulgaris (common bean) roots by the diazotroph Herbaspirillum seropedicae. Braz J Med Biol Res 44(3):182–185

    Article  CAS  PubMed  Google Scholar 

  • Shi H et al (2015) Comparative physiological and metabolomic responses of four Brachypodium distachyon varieties contrasting in drought stress resistance. Acta PhysiolPlant 37(6). doi:10.1007/s11738-015-1873-0

    Google Scholar 

  • Souza E et al (2014) Use of nitrogen-fixing bacteria to improve agricultural productivity. BMC Proc. doi:10.1186/1753-6561-8-S4-O23

    Google Scholar 

  • Steenhoudt O, Vanderleyden J (2000) Azospirillum, a free-living nitrogen-fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects. FEMS Microbiol Rev 24(4):487–506

    Article  CAS  PubMed  Google Scholar 

  • Tarrand JJ, Krieg NR, Dobereiner J (1978) A taxonomic study of the Spirillum lipoferum group, with descriptions of a new genus, Azospirillum gen. nov. and two species, Azospirillum lipoferum (Beijerinck) comb. nov. and Azospirillum brasilense sp. nov. Can J Microbiol 24(8):967–980

    Article  CAS  PubMed  Google Scholar 

  • Vain P (2011) Brachypodium as a model system for grass research. J Cereal Sci 54(1):1–7

    Article  Google Scholar 

  • Vargas L et al (2012) Early responses of rice (Oryza sativa L.) seedlings to inoculation with beneficial diazotrophic bacteria are dependent on plant and bacterial genotypes. Plant Soil 356(1–2):127–137

    Article  CAS  Google Scholar 

  • Verelst W et al (2013) Molecular and physiological analysis of growth-limiting drought stress in Brachypodium distachyon leaves. Mol Plant 6(2):311–322

    Article  CAS  PubMed  Google Scholar 

  • Verhagen BWM et al (2004) The transcriptome of rhizobacteria-induced systemic resistance in Arabidopsis. Mol Plant Microbe Interact 17(8):895–908

    Article  CAS  PubMed  Google Scholar 

  • Vogel JP et al (2010) Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature 463(7282):763–768

    Article  CAS  Google Scholar 

  • Zamioudis C et al (2013) Unraveling root developmental programs initiated by beneficial Pseudomonas spp. Bacteria. Plant Physiol 162(1):304–318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Research was financially supported by the National Institute of Science and Technology-Biological Nitrogen Fixation, INCT-FBN, through the Brazilian Research Council—CNPq/MCT and the Cîencia Sem Fronteiras Program, Brazil (fellowships supporting F.P.A and. V.C S.P). Support was also provided by grants DE-FOA-0000223 and DESC0013978 (to G.S.) from the Department of Energy, Office of Biological and Environmental Research.

Author contribution

F.P.A. participated in this study, its design and coordination, performed the experiments, data collection, interpretation of the data and drafted the manuscript; V.C.S.P. participated in the experiment perform and data collection specially in the microscopy figures; A.C.M.A. participated in the design and coordination of the study; E.M.S. participated in the design and coordination of the study and performed the measurement; F.P. participated in the design and coordination of the study; G.S. conceived of the study, and participated in its design and coordination and helped to draft the manuscript. All authors read and approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary Stacey.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 77 kb)

Supplementary material 2 (PDF 473 kb)

Supplementary material 3 (MOV 783 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

do Amaral, F.P., Pankievicz, V.C.S., Arisi, A.C.M. et al. Differential growth responses of Brachypodium distachyon genotypes to inoculation with plant growth promoting rhizobacteria. Plant Mol Biol 90, 689–697 (2016). https://doi.org/10.1007/s11103-016-0449-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-016-0449-8

Keywords

Navigation