Skip to main content
Log in

The barley HvNAC6 transcription factor affects ABA accumulation and promotes basal resistance against powdery mildew

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Barley HvNAC6 is a member of the plant-specific NAC (NAM, ATAF1,2, CUC2) transcription factor family and we have shown previously that it acts as a positive regulator of basal resistance in barley against the biotrophic pathogen Blumeria graminis f. sp. hordei (Bgh). In this study, we use a transgenic approach to constitutively silence HvNAC6 expression, using RNA interference (RNAi), to investigate the in vivo functions of HvNAC6 in basal resistance responses in barley in relation to the phytohormone ABA. The HvNAC6 RNAi plants displayed reduced HvNAC6 transcript levels and were more susceptible to Bgh than wild-type plants. Application of exogenous ABA increased basal resistance against Bgh in wild-type plants, but not in HvNAC6 RNAi plants, suggesting that ABA is a positive regulator of basal resistance which depends on HvNAC6. Silencing of HvNAC6 expression altered the light/dark rhythm of ABA levels which were, however, not influenced by Bgh inoculation. The expression of the two ABA biosynthetic genes HvNCED1 and HvNCED2 was compromised, and transcript levels of the ABA conjugating HvBG7 enzyme were elevated in the HvNAC6 RNAi lines, but this effect was not clearly associated with transgene-mediated resistance. Together, these data support a function of HvNAC6 as a regulator of ABA-mediated defence responses for maintenance of effective basal resistance against Bgh.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aida M, Ishida T, Fukaki H, Fujisawa H, Tasaka M (1997) Genes involved in organ separation in Arabidopsis: an analysis of the cup-shaped cotyledon mutant. Plant Cell 9(6):841–857. doi:10.1105/tpc.9.6.841

    Article  CAS  PubMed  Google Scholar 

  • Asselbergh B, De Vleesschauwer D, Höfte M (2008) Global switches and fine-tuning-ABA modulates plant pathogen defense. Mol Plant Microbe Interact 21(6):709–719. doi:10.1094/mpmi-21-6-0709

    Article  CAS  PubMed  Google Scholar 

  • Atkinson NJ, Urwin PE (2012) The interaction of plant biotic and abiotic stresses: from genes to the field. J Exp Bot 63(10):3523–3543. doi:10.1093/jxb/ers100

    Article  CAS  PubMed  Google Scholar 

  • Bryngelsson T, Sommer-Knudsen J, Gregersen PL, Collinge DB, Ek B, Thordal-Christensen H (1994) Purification, characterization, and molecular cloning of basic PR-1-type pathogenesis-related proteins from barley. Mol Plant Microbe Interact 7(2):267–275. doi:10.1094/MPMI-7-0267

    Article  CAS  PubMed  Google Scholar 

  • Caldo RA, Nettleton D, Wise RP (2004) Interaction-dependent gene expression in Mla-specified eesponse to barley powdery mildew. Plant Cell 16(9):2514–2528. doi:10.1105/tpc.104.023382

    Article  CAS  PubMed  Google Scholar 

  • Caldo RA, Nettleton D, Peng J, Wise RP (2006) Stage-specific suppression of basal defense discriminates barley plants containing fast- and delayed-acting Mla powdery mildew resistance alleles. Mol Plant Microbe Interact 19(9):939–947. doi:10.1094/mpmi-19-0939

    Article  CAS  PubMed  Google Scholar 

  • Carver TLW, Zeyen RJ, Bushnell WR, Robbins MP (1994) Inhibition of phenylalanine ammonia lyase and cinnamyl alcohol dehydrogenase increases quantitative susceptibility of barley to powdery mildew (Erysiphe graminis D.C.). Physiol Mol Plant Pathol 44(4):261–272. doi:10.1016/S0885-5765(05)80029-3

    Article  CAS  Google Scholar 

  • Chen W, Provart NJ, Glazebrook J, Katagiri F, Chang H-S, Eulgem T, Mauch F, Luan S, Zou G, Whitham SA, Budworth PR, Tao Y, Xie Z, Chen X, Lam S, Kreps JA, Harper JF, Si-Ammour A, Mauch-Mani B, Heinlein M, Kobayashi K, Hohn T, Dangl JL, Wang X, Zhu T (2002) Expression pofile matrix of Arabidopsis transcription factor genes suggests their putative functions in response to environmental stresses. Plant Cell 14(3):559–574. doi:10.1105/tpc.010410

    Article  CAS  PubMed  Google Scholar 

  • Chen Y-J, Lyngkjær MF, Collinge DB (2012) Future prospects for genetically engineering disease-resistant plants. In: Sessa G (ed) Molecular plant immunity. Wiley-Blackwell, New Jersey, pp 251–275. doi:10.1002/9781118481431.ch12

  • Christiansen M, Holm P, Gregersen P (2011) Characterization of barley (Hordeum vulgare L.) NAC transcription factors suggests conserved functions compared to both monocots and dicots. BMC Res Notes 4(1):302. doi:10.1186/1756-0500-4-302

    Article  CAS  PubMed  Google Scholar 

  • Collinge M, Boller T (2001) Differential induction of two potato genes, Stprx2 and StNAC, in response to infection by Phytophthora infestans and to wounding. Plant Mol Biol 46(5):521–529. doi:10.1023/a:1010639225091

    Article  CAS  PubMed  Google Scholar 

  • Collinge DB, Jensen MK, Lyngkjær MF, Rung JH (2008) How can we exploit functional genomics approaches for understanding the nature of plant defences? Barley as a case study. Eur J Plant Pathol 121(3):257–266. doi:10.1007/s10658-008-9271-8

    Article  CAS  Google Scholar 

  • Collins NC, Thordal-Christensen H, Lipka V, Bau S, Kombrink E, Qiu J-L, Huckelhoven R, Stein M, Freialdenhoven A, Somerville SC, Shulze-Lefert P (2003) SNARE-protein-mediated disease resistance at the plant cell wall. Nature 425(6961):973. doi:10.1038/nature02076

    Article  CAS  PubMed  Google Scholar 

  • Consonni C, Humphry ME, Hartmann HA, Livaja M, Durner J, Westphal L, Vogel J, Lipka V, Kemmerling B, Schulze-Lefert P, Somerville SC, Panstruga R (2006) Conserved requirement for a plant host cell protein in powdery mildew pathogenesis. Nat Genet 38(6):716–720. doi:10.1038/ng1806

    Article  CAS  PubMed  Google Scholar 

  • de Torres-Zabala M, Truman W, Bennett MH, Lafforgue G, Mansfield JW, Egea PR, Bogre L, Grant MR (2007) Pseudomonas syringae pv. tomato hijacks the Arabidopsis abscisic acid signalling pathway to cause disease. EMBO J 26(5):1434–1443. doi:10.1038/sj.emboj.7601575

    Article  PubMed  Google Scholar 

  • de Torres-Zabala M, Bennett MH, Truman WH, Grant MR (2009) Antagonism between salicylic and abscisic acid reflects early host–pathogen conflict and moulds plant defence responses. Plant J 59(3):375–386. doi:10.1111/j.1365-313X.2009.03875.x

    Article  PubMed  Google Scholar 

  • Delessert C, Kazan K, Wilson IW, Van Der Straeten D, Manners J, Dennis ES, Dolferus R (2005) The transcription factor ATAF2 represses the expression of pathogenesis-related genes in Arabidopsis. Plant J 43(5):745–757. doi:10.1111/j.1365-313X.2005.02488.x

    Article  CAS  PubMed  Google Scholar 

  • Derksen H, Rampitsch C, Daayf F (2013) Signaling cross-talk in plant disease resistance. Plant Sci 207:79–87. doi:10.1016/j.plantsci.2013.03.004

    Article  CAS  PubMed  Google Scholar 

  • Dietz K-J, Sauter A, Wichert K, Messdaghi D, Hartung W (2000) Extracellular β-glucosidase activity in barley involved in the hydrolysis of ABA glucose conjugate in leaves. J Exp Bot 51(346):937–944. doi:10.1093/jexbot/51.346.937

    Article  CAS  PubMed  Google Scholar 

  • Finkelstein RR, Gibson SI (2002) ABA and sugar interactions regulating development: cross-talk or voices in a crowd? Curr Opin Plant Biol 5(1):26–32. doi:10.1016/S1369-5266(01)00225-4

    Article  CAS  PubMed  Google Scholar 

  • Forcat S, Bennett M, Mansfield J, Grant M (2008) A rapid and robust method for simultaneously measuring changes in the phytohormones ABA, JA and SA in plants following biotic and abiotic stress. Plant Methods 4(1):16. doi:10.1186/1746-4811-4-16

    Article  PubMed  Google Scholar 

  • Fujita Y, Fujita M, Shinozaki K, Yamaguchi-Shinozaki K (2011) ABA-mediated transcriptional regulation in response to osmotic stress in plants. J Plant Res 124(4):509–525. doi:10.1007/s10265-011-0412-3

    Article  CAS  PubMed  Google Scholar 

  • Gregersen PL, Holm PB (2007) Transcriptome analysis of senescence in the flag leaf of wheat (Triticum aestivum L.). Plant Biotechnol J 5(1):192–206. doi:10.1111/j.1467-7652.2006.00232.x

    Google Scholar 

  • Gregersen PL, Thordal-Christensen H, Förster H, Collinge DB (1997) Differential gene transcript accumulation in barley leaf epidermis and mesophyll in response to attack by Blumeria graminis f. sp. hordei (syn. Erysiphe graminisf. sp. hordei). Physiol Mol. Plant Pathol 51(2):85–97. doi:10.1006/pmpp.1997.0108

    CAS  Google Scholar 

  • Guo YF, Gan SS (2006) AtNAP, a NAC family transcription factor, has an important role in leaf senescence. Plant J 46(4):601–612. doi:10.1111/j.1365-313X.2006.02723.x

    Article  CAS  PubMed  Google Scholar 

  • Harwood WA (2012) Advances and remaining challenges in the transformation of barley and wheat. J Exp Bot 63(5):1791–1798. doi:10.1093/jxb/err380

    Article  CAS  PubMed  Google Scholar 

  • Holme IB, Dionisio G, Brinch-Pedersen H, Wendt T, Madsen CK, Vincze E, Holm PB (2012) Cisgenic barley with improved phytase activity. Plant Biotechnol J 10(2):237–247. doi:10.1111/j.1467-7652.2011.00660.x

    Article  CAS  PubMed  Google Scholar 

  • Hu X, Bidney DL, Yalpani N, Duvick JP, Crasta O, Folkerts O, Lu G (2003) Overexpression of a gene encoding hydrogen peroxide-generating oxalate oxidase evokes defense responses in sunflower. Plant Physiol 133(1):170–181. doi:10.1104/pp.103.024026

    Article  CAS  PubMed  Google Scholar 

  • Hückelhoven R, Fodor J, Preis C, Kogel K-H (1999) Hypersensitive cell death and papilla formation in barley attacked by the powdery mildew fungus are associated with hydrogen peroxide but not with salicylic acid accumulation. Plant Physiol 119(4):1251–1260. doi:10.1104/pp.119.4.1251

    Article  PubMed  Google Scholar 

  • Jain SK, Langen G, Hess W, Börner T, Hückelhoven R, Kogel K-H (2004) The white barley mutant albostrians shows enhanced resistance to the biotroph Blumeria graminis f. sp. hordei. Mol Plant Microbe Interact 17(4):374–382. doi:10.1094/mpmi.2004.17.4.374

    Google Scholar 

  • Jensen MK, Rung JH, Gregersen PL, Gjetting T, Fuglsang AT, Hansen M, Joehnk N, Lyngkjær MF, Collinge DB (2007) The HvNAC6 transcription factor: a positive regulator of penetration resistance in barley and Arabidopsis. Plant Mol Biol 65(1):137–150. doi:10.1007/s11103-007-9204-5

    Article  CAS  PubMed  Google Scholar 

  • Jensen MK, Hagedorn PH, de Torres-Zabala M, Grant MR, Rung JH, Collinge DB, Lyngkjær MF (2008) Transcriptional regulation by an NAC (NAM-ATAF1,2-CUC2) transcription factor attenuates ABA signalling for efficient basal defence towards Blumeria graminis f. sp hordei in Arabidopsis. Plant J 56(6):867–880. doi:10.1111/j.1365-313X.2008.03646.x

    Google Scholar 

  • Jensen MK, Kjaersgaard T, Nielsen MM, Galberg P, Petersen K, O’Shea C, Skriver K (2010) The Arabidopsis thaliana NAC transcription factor family: structure-function relationships and determinants of ANAC019 stress signalling. Biochem J 426:183–196. doi:10.1042/bj20091234

    Article  CAS  PubMed  Google Scholar 

  • Kim T-H (2012) Plant stress surveillance monitored by ABA and disease signaling interactions. Mol Cells 33(1):1–7. doi:10.1007/s10059-012-2299-9

    Article  PubMed  Google Scholar 

  • Kølster P, Munk L, Stølen O, Løhde J (1986) Near-isogenic barley lines with genes for resistance to powdery mildew. Crop Sci 26(5):903–907. doi:10.2135/cropsci1986.0011183X002600050014x

    Article  Google Scholar 

  • Kruger WM, Szabo LJ, Zeyen RJ (2003) Transcription of the defense response genes chitinase IIb, PAL and peroxidase is induced by the barley powdery mildew fungus and is only indirectly modulated by R genes. Physiol Mol Plant Pathol 63(3):167–178. doi:10.1016/j.pmpp.2003.10.006

    Article  CAS  Google Scholar 

  • Lane BG, Dunwell JM, Ray JA, Schmitt MR, Cuming AC (1993) Germin, a protein marker of early plant development, is an oxalate oxidase. J Biol Chem 268(17):12239–12242

    CAS  PubMed  Google Scholar 

  • Lee KH, Piao HL, Kim H-Y, Choi SM, Jiang F, Hartung W, Hwang I, Kwak JM, Lee I-J, Hwang I (2006) Activation of glucosidase via stress-induced polymerization rapidly increases active pools of abscisic acid. Cell 126(6):1109–1120. doi:10.1016/j.cell.2006.07.034

    Article  CAS  PubMed  Google Scholar 

  • Lipka V, Dittgen J, Bednarek P, Bhat R, Wiermer M, Stein M, Landtag J, Brandt W, Rosahl S, Scheel D, Llorente F, Molina A, Parker J, Somerville S, Schulze-Lefert P (2005) Pre- and postinvasion defenses both contribute to nonhost resistance in Arabidopsis. Science 310(5751):1180–1183. doi:10.1126/science.1119409

    Article  CAS  PubMed  Google Scholar 

  • Lu PL, Chen NZ, An R, Su Z, Qi BS, Ren F, Chen J, Wang XC (2007) A novel drought-inducible gene, ATAF1, encodes a NAC family protein that negatively regulates the expression of stress-responsive genes in Arabidopsis. Plant Mol Biol 63(2):289–305. doi:10.1007/s11103-006-9089-8

    Article  CAS  PubMed  Google Scholar 

  • Lyngkjær MF, Carver TLW, Zeyen RJ (1997) Suppression of resistance to Erysiphe graminisf.sp.hordei conferred by the mlo5 barley powdery mildew resistance gene. Physiol Mol Plant Pathol 50(1):17–36. doi:10.1006/pmpp.1996.0068

    Article  Google Scholar 

  • Matthews P, Wang M-B, Waterhouse P, Thornton S, Fieg S, Gubler F, Jacobsen J (2001) Marker gene elimination from transgenic barley, using co-transformation with adjacent ‘twin T-DNAs’ on a standard Agrobacterium transformation vector. Mol Breed 7(3):195–202. doi:10.1023/a:1011333321893

    Article  CAS  Google Scholar 

  • Mauch-Mani B, Flors V (2009) The ATAF1 transcription factor: at the convergence point of ABA-dependent plant defense against biotic and abiotic stresses. Cell Res 19(12):1322–1323. doi:10.1038/cr.2009.135

    Article  CAS  PubMed  Google Scholar 

  • Mauch-Mani B, Mauch F (2005) The role of abscisic acid in plant-pathogen interactions. Curr Opin Plant Biol 8(4):409–414. doi:10.1016/j.pbi.2005.05.015

    Article  CAS  PubMed  Google Scholar 

  • Millar AA, Jacobsen JV, Ross JJ, Helliwell CA, Poole AT, Scofield G, Reid JB, Gubler F (2006) Seed dormancy and ABA metabolism in Arabidopsis and barley: the role of ABA 8’-hydroxylase. Plant J 45(6):942–954. doi:10.1111/j.1365-313X.2006.02659.x

    Article  CAS  PubMed  Google Scholar 

  • Mohr P, Cahill D (2007) Suppression by ABA of salicylic acid and lignin accumulation and the expression of multiple genes, in Arabidopsis infected with Pseudomonas syringae pv. tomato. Funct Integr Genomics 7(3):181–191. doi:10.1007/s10142-006-0041-4

    Article  CAS  PubMed  Google Scholar 

  • Nakashima K, Tran LSP, Van Nguyen D, Fujita M, Maruyama K, Todaka D, Ito Y, Hayashi N, Shinozaki K, Yamaguchi-Shinozaki K (2007) Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice. Plant J 51(4):617–630. doi:10.1111/j.1365-313X.2007.03168.x

    Article  CAS  PubMed  Google Scholar 

  • Nambara E, Marion-Poll A (2005) Abscisic acid biosynthesis and catabolism. Annu Rev Plant Biol 56(1):165–185. doi:10.1146/annurev.arplant.56.032604.144046

    Article  CAS  PubMed  Google Scholar 

  • Nuruzzaman M, Manimekalai R, Sharoni AM, Satoh K, Kondoh H, Ooka H, Kikuchi S (2010) Genome-wide analysis of NAC transcription factor family in rice. Gene 465(1–2):30–44. doi:10.1016/j.gene.2010.06.008

    Article  CAS  PubMed  Google Scholar 

  • Olsen AN, Ernst HA, Leggio LL, Skriver K (2005a) DNA-binding specificity and molecular functions of NAC transcription factors. Plant Sci 169(4):785–797. doi:10.1016/j.plantsci.2005.05.035

    Article  CAS  Google Scholar 

  • Olsen AN, Ernst HA, Lo Leggio L, Skriver K (2005b) NAC transcription factors: structurally distinct, functionally diverse. Trends Plant Sci 10(2):79–87. doi:10.1016/j.tplants.2004.12.010

    Article  CAS  PubMed  Google Scholar 

  • Rayapuram C, Jensen MK, Maiser F, Shanir JV, Hornshøj H, Rung JH, Gregersen PL, Schweizer P, Collinge DB, Lyngkjær MF (2012) Regulation of basal resistance by a powdery mildew-induced cysteine-rich receptor-like protein kinase in barley. Mol Plant Pathol 13(2):135–147. doi:10.1111/j.1364-3703.2011.00736.x

    Article  CAS  PubMed  Google Scholar 

  • Seiler C, Harshavardhan VT, Rajesh K, Reddy PS, Strickert M, Rolletschek H, Scholz U, Wobus U, Sreenivasulu N (2011) ABA biosynthesis and degradation contributing to ABA homeostasis during barley seed development under control and terminal drought-stress conditions. J Exp Bot 62(8):2615–2632. doi:10.1093/jxb/erq446

    Article  CAS  PubMed  Google Scholar 

  • Seung D, Risopatron J, Jones B, Marc J (2012) Circadian clock-dependent gating in ABA signalling networks. Protoplasma 249(3):445–457. doi:10.1007/s00709-011-0304-3

    Article  CAS  PubMed  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K, Seki M (2003) Regulatory network of gene expression in the drought and cold stress responses. Curr Opin Plant Biol 6(5):410–417. doi:10.1016/S1369-5266(03)00092-X

    Article  CAS  PubMed  Google Scholar 

  • Souer E, van Houwelingen A, Kloos D, Mol J, Koes R (1996) The no apical meristem gene of petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordia boundaries. Cell 85(2):159–170. doi:10.1016/s0092-8674(00)81093-4

    Article  CAS  PubMed  Google Scholar 

  • Stein M, Dittgen J, Sánchez-Rodríguez C, Hou B-H, Molina A, Schulze-Lefert P, Lipka V, Somerville S (2006) Arabidopsis PEN3/PDR8, an ATP binding cassette transporter, contributes to nonhost resistance to inappropriate pathogens that enter by direct penetration. Plant Cell 18(3):731–746. doi:10.1105/tpc.105.038372

    Article  CAS  PubMed  Google Scholar 

  • Thordal-Christensen H, Smedegaard-Petersen V (1988) Comparison of resistance-inducing abilities of virulent and avirulent races of Erysiphe graminis f.sp. hordei and a race of Erysiphe graminis f.sp. tritici in barley. Plant Pathol 37(1):20–27. doi:10.1111/j.1365-3059.1988.tb02191.x

  • Thordal-Christensen H, Brandt J, Cho BH, Rasmussen SK, Gregersen PL, Smedegaard-Petersen V, Collinge DB (1992) cDNA cloning and characterization of two barley peroxidase transcripts induced differentially by the powdery mildew fungus Erysiphe graminis. Physiol Mol Plant Pathol 40(6):395–409. doi:10.1016/0885-5765(92)90031-P

    Article  CAS  Google Scholar 

  • Thordal-Christensen H, Zhang Z, Wei Y, Collinge DB (1997) Subcellular localization of H2O2 in plants. H2O2 accumulation in papillae and hypersensitive response during the barley—powdery mildew interaction. Plant J 11(6):1187–1194. doi:10.1046/j.1365-313X.1997.11061187.x

    Google Scholar 

  • Ton J, Mauch-Mani B (2004) β-Amino-butyric acid-induced resistance against necrotrophic pathogens is based on ABA-dependent priming for callose. Plant J 38(1):119–130. doi:10.1111/j.1365-313X.2004.02028.x

    Article  CAS  PubMed  Google Scholar 

  • Ton J, Flors V, Mauch-Mani B (2009) The multifaceted role of ABA in disease resistance. Trends Plant Sci 14(6):310–317. doi:10.1016/j.tplants.2009.03.006

    Article  CAS  PubMed  Google Scholar 

  • Uauy C, Distelfeld A, Fahima T, Blechl A, Dubcovsky J (2006) A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science 314(5803):1298–1301. doi:10.1126/science.1133649

    Article  CAS  PubMed  Google Scholar 

  • Vallélian-Bindschedler L, Métraux J-P, Schweizer P (1998) Salicylic acid accumulation in barley is pathogen specific but not required for defense-gene activation. Mol Plant Microbe Interact 11(7):702–705. doi:10.1094/mpmi.1998.11.7.702

    Article  Google Scholar 

  • Wang XE, Basnayake B, Zhang HJ, Li GJ, Li W, Virk N, Mengiste T, Song FM (2009) The Arabidopsis ATAF1, a NAC transcription factor, is a negative regulator of defense responses against necrotrophic fungal and bacterial pathogens. Mol Plant Microbe Interact 22(10):1227–1238. doi:10.1094/mpmi-22-10-1227

    Article  CAS  PubMed  Google Scholar 

  • Wesley SV, Helliwell CA, Smith NA, Wang M, Rouse DT, Liu Q, Gooding PS, Singh SP, Abbott D, Stoutjesdijk PA, Robinson SP, Gleave AP, Green AG, Waterhouse PM (2001) Construct design for efficient, effective and high-throughput gene silencing in plants. Plant J 27(6):581–590. doi:10.1046/j.1365-313X.2001.01105.x

    Article  CAS  PubMed  Google Scholar 

  • Wiberg A (1974) Genetical studies of spontaneous sources of resistance to powdery mildew in barley. Hereditas 77(1):89–148. doi:10.1111/j.1601-5223.1974.tb01357.x

    Article  CAS  PubMed  Google Scholar 

  • Wiese J, Kranz T, Schubert S (2004) Induction of pathogen resistance in barley by abiotic stress. Plant Biol 6(5):529–536. doi:10.1055/s-2004-821176

    Article  CAS  PubMed  Google Scholar 

  • Wu YR, Deng ZY, Lai JB, Zhang YY, Yang CP, Yin BJ, Zhao QZ, Zhang L, Li Y, Yang CW, Xie Q (2009) Dual function of Arabidopsis ATAF1 in abiotic and biotic stress responses. Cell Res 19(11):1279–1290. doi:10.1038/cr.2009.108

    Article  CAS  PubMed  Google Scholar 

  • Xu Z-J, Nakajima M, Suzuki Y, Yamaguchi I (2002) Cloning and characterization of the abscisic acid-specific glucosyltransferase gene from adzuki bean seedlings. Plant Physiol 129(3):1285–1295. doi:10.1104/pp.001784

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi M, Mitsuda N, Ohtani M, Ohme-Takagi M, Kato K, Demura T (2011) VASCULAR-RELATED NAC-DOMAIN 7 directly regulates the expression of a broad range of genes for xylem vessel formation. Plant J 66(4):579–590. doi:10.1111/j.1365-313X.2011.04514.x

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (2006) Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol 57:781–803. doi:10.1146/annurev.arplant.57.032905.105444

    Google Scholar 

  • Yasuda M, Ishikawa A, Jikumaru Y, Seki M, Umezawa T, Asami T, Maruyama-Nakashita A, Kudo T, Shinozaki K, Yoshida S, Nakashita H (2008) Antagonistic interaction between systemic acquired resistance and the abscisic acid-mediated abiotic stress response in Arabidopsis. Plant Cell 20(6):1678–1692. doi:10.1105/tpc.107.054296

    Article  CAS  PubMed  Google Scholar 

  • Zeyen RJ, Carver TLW, Lyngkjær MF (2002) Epidermal cell papillae. In: Bélanger RR, Bushnell WR, Dik AJ, Carver TLW (eds) The powdery mildews: a comprehensive treatise. APS Press, St. Paul, pp 107–124

    Google Scholar 

  • Zhang S, Klessig DF (2001) MAPK cascades in plant defense signaling. Trends Plant Sci 6(11):520–527. doi:10.1016/s1360-1385(01)02103-3

    Article  CAS  PubMed  Google Scholar 

  • Zhong R, Demura T, Ye Z (2006) SND1, a NAC domain transcription factor, is a key regulator of secondary wall synthesis in fibers of Arabidopsis. Plant Cell 18(11):3158–3170. doi:10.1105/tpc.106.047399

    Article  CAS  PubMed  Google Scholar 

  • Zhou F, Zhang Z, Gregersen PL, Mikkelsen JD, de Neergaard E, Collinge DB, Thordal-Christensen H (1998) Molecular characterization of the oxalate oxidase involved in the response of barley to the powdery mildew fungus. Plant Physiol 117(1):33–41. doi:10.1104/pp.117.1.33

    Article  CAS  PubMed  Google Scholar 

  • Zhu J-K (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53(1):247–273. doi:10.1146/annurev.arplant.53.091401.143329

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Authors wish to acknowledge Marta de Torres-Zabala for technical advice on hormone extraction and Rebecca L. Neale for proofreading the manuscript. Research was financed by The Danish Council for Independent Research: Technology and Production Sciences (FTP) via the project, “Unravelling plant regulatory networks: NAC transcription factors in senescence and disease resistance,” and partial funding of Y.-J. C.’s PhD scholarship from the University of Copenhagen, Faculty of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael F. Lyngkjær.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 26 kb)

Supplementary material 2 (DOCX 127 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, YJ., Perera, V., Christiansen, M.W. et al. The barley HvNAC6 transcription factor affects ABA accumulation and promotes basal resistance against powdery mildew. Plant Mol Biol 83, 577–590 (2013). https://doi.org/10.1007/s11103-013-0109-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-013-0109-1

Keywords

Navigation