Skip to main content
Log in

Identification of metabolites related to mechanisms of resistance in barley against Fusarium graminearum, based on mass spectrometry

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Fusarium head blight (FHB) is an economically important disease of the family Triticeae, as, apart from yield reduction it also causes quality deterioration by producing mycotoxins. Host resistance is the most promising way to control the disease. Metabolic profiling was applied to identify resistance related (RR) metabolites against Fusarium graminearum in five FHB-resistant genotypes (‘Chevron’, ‘H5277-44’, ‘H5277-164’, ‘M92-513’ and ‘M122’) relative to one FHB-susceptible genotype (‘Stander’). The disease severity was assessed in greenhouse to group the genotypes based on FHB-resistance. The disease was quantified as the proportion of diseased spikelets (PSD) and the area under the disease progress curve (AUDPC). Spikelets were collected at 72 h post inoculation. Metabolites were extracted into an aqueous solution of methanol and analyzed using a LC-hybrid-MS system. Metabolite abundances were subjected to a resistant versus susceptible pair-wise analysis, using a t test. Resistance related (RR) metabolites, both constitutive (RRC) and induced (RRI), were identified amongst metabolites whose levels were significantly higher in resistant genotype than in susceptible. Among 1,430 RR metabolites, 115 were putatively identified. These RR metabolites belonged to different chemical groups: fatty acids: linolenic acid; phenylpropanoids: p-coumaric, sinapic acid; flavonoids: naringenin, kaempferol glucoside, catechol glucoside. In addition, resistance indicator metabolites, such as deoxynivalenol (DON) and DON-3-O-glucoside (D3G) were also detected. The amount of total DON synthesized converted to D3G (PDC) was the greatest in resistant genotype ‘Chevron’ (PDC = 0.76). The role of the resistance-related and resistance-indicator metabolites on plant defense, and their use as potential biomarkers to screen barley genotypes for FHB resistance is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

AME:

Accurate mass error

AUDPC:

Area under disease progress curve

CAN:

Canonical vector

CDA:

Canonical discriminant analysis

D3G:

DON-3-O-glucoside

DON:

Deoxynivalenol

FHB:

Fusarium head blight

GC-MS:

Gas chromatography mass spectrometry

JA:

Jasmonic acid

LC-MS:

Liquid chromatography mass spectrometry

PDC:

Proportion of DON converted to D3G

PR:

Pathogenesis related

PSD:

Proportion of diseased spikelets

QTL:

Quantitative trait loci

RM:

Resistant mock-inoculated

RP:

Resistant pathogen-inoculated

RR:

Resistance-related

RRC:

Resistance-related constitutive

RRI:

Resistance-related induced

SM:

Susceptible mock-inoculated

SP:

Susceptible pathogen-inoculated

TDP:

Total DON produced

References

  • Bai G, Shaner G (2004) Management and resistance in wheat and barley to Fusarium head blight. Annu Rev Phytopathol 42:135–161

    Article  PubMed  CAS  Google Scholar 

  • Batovska D, Todorova I, Nedelcheva D, Parushev S, Atanassov A, Hvarleva T, Djakova G, Bankova V, Popov S (2008) Preliminary study on biomarkers for the fungal resistance in Vitis vinifera leaves. J Plant Physiol 165:791–795

    Article  PubMed  CAS  Google Scholar 

  • Blee E (2002) Impact of phyto-oxylipins in plant defense. Trends Plant Sci 7:315–321

    Article  PubMed  CAS  Google Scholar 

  • Boddu J, Cho S, Kruger WM, Muehlbauer GJ (2006) Transcriptome analysis of the barley-Fusarium graminearum interaction. Mol Plant Microbe Interact 19:407–417

    Article  PubMed  CAS  Google Scholar 

  • Bollina V, Kumaraswamy GK, Kushalappa AC, Choo TM, Dion Y, Rioux S, Faubert D, Hamzehzarghani H (2010) Mass spectrometry-based metabolomics application to identify quantitative resistance-related metabolites in barley against Fusarium head blight. Mol Plant Pathol 11:769–782

    PubMed  CAS  Google Scholar 

  • Boutigny AL, Barreau C, Atanasova-Penichon V, Verdal-Bonnin MN, Pinson-Gadais L, Richard-Forget F (2009) Ferulic acid, an efficient inhibitor of type B trichothecene biosynthesis and Tri gene expression in Fusarium liquid cultures. Mycol Res 113:746–753

    Article  PubMed  CAS  Google Scholar 

  • Boutigny AL, Atanasova-Pénichon V, Benet M, Barreau C, Richard-Forget F (2010) Natural phenolic acids from wheat bran inhibit Fusarium culmorum trichothecene biosynthesis in vitro by repressing Tri gene expression. Eur J Plant Pathol 127:275–286

    Article  CAS  Google Scholar 

  • Bovy A, Schijlen E, Hall RD (2007) Metabolic engineering of flavonoids in tomato (Solanum lycopersicum), the potential for metabolomics. Metabolomics 3:399–412

    Article  CAS  Google Scholar 

  • Boyd C, Horsley R, Kleinhofs A (2008) A vrs1 mutant in CIho 4196 to facilitate breeding of 6-rowed cultivars with Fusarium head blight resistance. Barley Genet Newsl 38:7–9

    Google Scholar 

  • Buerstmayr H, Legzdina L, Steiner B, Lemmens M (2004) Variation for resistance to Fusarium head blight in spring barley. Euphytica 137:279–290

    Article  CAS  Google Scholar 

  • Buerstmayr H, Ban T, Anderson JA (2009) QTL mapping and marker-assisted selection for Fusarium head blight resistance in wheat: a review. Plant Breed Rev 128:1–26

    Article  CAS  Google Scholar 

  • Choo TM (2006) Breeding barley for resistance to Fusarium head blight and mycotoxin accumulation. Plant Breed Rev 26:125–169

    Google Scholar 

  • Dahleen LS, Agrama HA, Horsley RD, Steffenson BJ, Schwarz PB, Mesfin A, Franckowiak JD (2003) Identification of QTLs associated with Fusarium head blight resistance in Zhedar 2 barley. Theor Appl Genet 108:95–104

    Article  PubMed  CAS  Google Scholar 

  • de la Pena RC, Smith KP, Capettini F, Muehlbauer GJ, Gallo-Meagher M, Dill-Macky R, Somers DA, Rasmusson DC (1999) Quantitative trait loci associated with resistance to Fusarium head blight and kernel discoloration in barley. Theor Appl Genet 99:561–569

    Article  Google Scholar 

  • Eggert K, Hollmann J, Hiller B, Kruse H, Rawel H, Pawelzik E (2010) Effects of Fusarium infection on the phenolics in emmer and naked barley. J Agric Food Chem 58:3043–3049

    Article  PubMed  CAS  Google Scholar 

  • Galeotti F, Barile E, Curir P, Dolci M, Lanzotti V (2008) Flavonoids from carnation (Dianthus caryophyllus) and their antifungal activity. Phytochem Lett 1:44–48

    Article  CAS  Google Scholar 

  • Geddes J, Eudes F, Laroche A, Selinger LB (2008) Differential expression of proteins in response to the interaction between the pathogen Fusarium graminearum and its host, Hordeum vulgare. Proteomics 8:545–554

    Article  PubMed  CAS  Google Scholar 

  • Golkari S, Gilbert J, Prashar S, Procunier JD (2007) Microarray analysis of Fusarium graminearum-induced wheat genes: identification of organ-specific and differentially expressed genes. Plant Biotechnol J 5:38–49

    Article  PubMed  CAS  Google Scholar 

  • Grayer RJ, Harborne JB (1994) A survey of antifungal compounds from higher plants 1982–1993. Phytochemistry 37:19–42

    Article  CAS  Google Scholar 

  • Hamzehzarghani H, Paranidharan V, Abu-Nada Y, Kushalappa A, Dion Y, Rioux S, Comeau A, Yaylayan V, Marshall WD (2008) Metabolite profiling coupled with statistical analyses for potential high-throughput screening of quantitative resistance to Fusarium head blight in wheat. Can J Plant Pathol 30:24–36

    Article  CAS  Google Scholar 

  • Hoehenwarter W, van Dongen JT, Wienkoop S, Steinfath M, Humme J, Erban A, Sulpice R, Regierer B, Kopka J, Geigenberger P, Weckwerth W (2008) A rapid approach for phenotype-screening and database independent detection of cSNP/protein polymorphism using mass accuracy precursor alignment. Proteomics 8:4214–4225

    Article  PubMed  CAS  Google Scholar 

  • Jung MJ, Heo SI, Wang MH (2010) HPLC analysis and antioxidant activity of Ulmus davidiana and some flavonoids. Food Chem 120:313–318

    Article  CAS  Google Scholar 

  • Jwa N, Agrawal G, Tamogami S, Yonekura M, Han O, Iwahashi H, Rakwal R (2006) Role of defense/stress-related marker genes, proteins and secondary metabolites in defining rice self-defense mechanisms. Plant Physiol Biochem 44:261–273

    Article  PubMed  CAS  Google Scholar 

  • Kachlicki P, Einhorn J, Muth D, Kerhoas L, Stobiecki M (2008) Evaluation of glycosylation and malonylation patterns in flavonoid glycosides during LC/MS/MS metabolite profiling. J Mass Spectrom 43:572–586

    Article  PubMed  CAS  Google Scholar 

  • Kim MJ, Hyun JN, Kim JA, Park JC, Kim MY, Kim JG, Lee SJ, Chun S-C, Chung IM (2007) Relationship between phenolic compounds, anthocyanins content and antioxidant activity in colored barley germplasm. J Agric Food Chem 55:4802–4809

    Article  PubMed  CAS  Google Scholar 

  • Kumaraswamy GK, Bollina V, Kushalappa AC, Choo TM, Dion Y, Rioux S, Mamer O, Faubert D (2011) Metabolomics technology to phenotype resistance in barley against Gibberella zeae. Eur J Plant Pathol 130:29–43

    Article  CAS  Google Scholar 

  • Lemmens M, Scholz U, Berthiller F, Dall’Asta C, Koutnik A, Schuhmacher R, Adam G, Buerstmayr H, Mesterházy Á, Krska R, Ruckenbauer P (2005) The ability to detoxify the mycotoxin deoxynivalenol colocalizes with a major quantitative trait locus. Mol Plant Microbe Interact 18:1318–1324

    Article  PubMed  CAS  Google Scholar 

  • Li G, Yen Y (2008) Jasmonate and ethylene signaling pathway may mediate Fusarium head blight resistance in wheat. Crop Sci 48:1888–1896

    Article  Google Scholar 

  • Ma Z, Steffenson BJ, Prom LK, Lapitan NLV (2000) Mapping of quantitative trait loci for Fusarium head blight resistance in barley. Phytopathology 90:1079–1088

    Article  PubMed  CAS  Google Scholar 

  • March RE, Miao X-S, Metcalfe CD (2004) A fragmentation study of a flavone triglycoside, kaempferol-3-O-robinoside-7-O-rhamnoside. Rapid Commun Mass Spectrom 18:931–934

    Article  PubMed  CAS  Google Scholar 

  • Matern U, Kneusel RE (1988) Phenolic compounds in plant disease resistance. Phytoparasitica 16:153–170

    Article  CAS  Google Scholar 

  • Matsuda F, Yonekura-S K, Niida R, Kuromori T, Shinozaki K, Saito K (2009) MS/MS spectral tag-based annotation of non-targeted profile of plant secondary metabolites. Plant J 57:555–577

    Article  PubMed  CAS  Google Scholar 

  • McKeehen JD, Busch RH, Fulcher RG (1999) Evaluation of wheat (Triticum aestivum L.) phenolic acids during grain development and their contribution to Fusarium resistance. J Agric Food Chem 47:1476–1482

    Article  PubMed  CAS  Google Scholar 

  • Mei CS, Qi M, Sheng GY, Yang YN (2006) Inducible overexpression of a rice allene oxide synthase gene increases the endogenous jasmonic acid level, PR gene expression, and host resistance to fungal infection. Mol Plant Microbe Interact 19:1127–1137

    Article  PubMed  CAS  Google Scholar 

  • Mesfin A, Smith KP, Dill-Macky R, Evans CK, Waugh R, Gustus CD, Muehlbauer GJ (2003) Quantitative trait loci for Fusarium head blight resistance in barley detected in a two-rowed by six-rowed population. Crop Sci 43:307–318

    Article  CAS  Google Scholar 

  • Moco S, Bino RJ, Vorst O, Verhoeven HA, de Groot J, van Beek TA, Vervoort J, de Vos CH (2006) A liquid chromatography-mass spectrometry-based metabolome database for tomato. Plant Physiol 141:1205–1218

    Article  PubMed  CAS  Google Scholar 

  • Nicholson P, Asachary S, Gosman N, Steed A, Chen X (2008) Role of phytohormone signalling in resistance of wheat to Fusarium head blight. Cereal Res Commun 36:213–216

    Article  Google Scholar 

  • Nodari RO, Tsai SM, Gilbertson RL, Gepts P (1993) Toward an integrated linkage map of common bean. 3. Mapping genetic factors controlling host-bacteria interactions. Genetics 134:341–350

    PubMed  CAS  Google Scholar 

  • Poppenberger B, Berthiller F, Lucyshyn D, Sieberer T, Schuhmacher R, Krska R, Kuchler K, Glossl J, Luschnig C, Adam G (2003) Detoxification of the Fusarium mycotoxin deoxynivalenol by a UDP-glucosyltransferase from Arabidopsis thaliana. J Biol Chem 278:47905–47914

    Article  PubMed  CAS  Google Scholar 

  • Rocha O, Ansari K, Doohan FM (2005) Effects of trichothecene mycotoxins on eukaryotic cells: a review. Food Addit Contam 22:369–378

    Article  PubMed  CAS  Google Scholar 

  • Sanchez-Rabaneda F, Jauregui O, Casals I, Andras-Lacueva C, Izquierdo-Pulido M, Lamuela-Raventas RM (2003) Liquid chromatographic/electrospray ionization tandem mass spectrometric study of the phenolic composition of cocoa (Theobroma cacao). J Mass Spectrom 38:35–42

    Article  PubMed  CAS  Google Scholar 

  • Sato K, Hori K, Takeda K (2008) Detection of Fusarium head blight resistance QTLs using five populations of top-cross progeny derived from two-row × two-row crosses in barley. Mol Breed 22:517–526

    Article  CAS  Google Scholar 

  • Schweizer P, Buchala A, Metraux JP (1997) Gene-expression patterns and levels of jasmonic acid in rice treated with the resistance inducer 2, 6-dichloroisonicotinic acid. Plant Physiol 115:61–70

    PubMed  CAS  Google Scholar 

  • Silva AMS, WeidenbÖRner M, Cavaleiro JAS (1998) Growth control of different Fusarium species by selected flavones and flavonoid mixtures. Mycol Res 102:638–640

    Article  CAS  Google Scholar 

  • Skadhauge B, Thomsen KK, Wettstein D (1997) The role of the barley testa layer and its flavonoid content in resistance to Fusarium infections. Hereditas 126:147–160

    Article  CAS  Google Scholar 

  • Smith K, Evans C, Dill-Macky R, Gustus C, Xie W, Dong Y (2004) Host genetic effect on deoxynivalenol accumulation in Fusarium head blight of barley. Phytopathology 94:766–771

    Article  PubMed  CAS  Google Scholar 

  • Smith CA, Want EJ, O’Maille G, Abagyan R, Siuzdak G (2006) XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal Chem 78:779–787

    Article  PubMed  CAS  Google Scholar 

  • Steinfath M, Strehmel N, Peters R, Schauer N, Groth D, Hummel J, Steup M, Selbig J, Kopka J, Geigenberger P, Van Dongen JT (2010) Discovering plant metabolic biomarkers for phenotype prediction using an untargeted approach. Plant Biotechnol J 8:900–911

    Article  PubMed  CAS  Google Scholar 

  • Tarpley L, Duran AL, Kebrom TH, Sumner LW (2005) Biomarker metabolites capturing the metabolite variance present in a rice plant developmental period. BMC Plant Biol 5:8

    Article  PubMed  Google Scholar 

  • Tautenhahn R, Böttcher C, Neumann S (2007) Annotation of LC/ESI-MS mass signals. In: Proceedings of BIRD 2007—1st international conference on bioinformatics research and development. Springer LNBI 4414

  • Tekauz A, McCallum B, Gilbert J (2000) Review: Fusarium head blight of barley in western Canada. Can J Plant Pathol 22:9–16

    Article  Google Scholar 

  • Theerasin S, Baker AT (2009) Analysis and identification of phenolic compounds in Dioscorea hispida Dennst. As J Food Ag-Ind 2:547–560

    Google Scholar 

  • Walter S, Nicholson P, Doohan F (2009) Action and reaction of host and pathogen during Fusarium head blight disease. New Phytol 185:54–66

    Article  PubMed  Google Scholar 

  • Whetten R, Sederoff R (1995) Lignin biosynthesis. Plant Cell 7:1001–1013

    Article  PubMed  CAS  Google Scholar 

  • Yoshida M, Kawada N, Tohnooka T (2005) Effect of row type, flowering type and several other spike characters on resistance to Fusarium head blight in barley. Euphytica 141:217–227

    Article  Google Scholar 

  • Zadoks JC, Chang TT, Konzak CF (1974) A decimal code for the growth stages of cereals. Weed Res 14:415–421

    Article  Google Scholar 

Download references

Acknowledgments

This project was funded by the Ministère de l’Agriculture, des Pêcheries et de l’Alimentation du Québec (MAPAQ), Centre de recherche sur les grains inc. (CEROM), and the Fédération des producteurs de porc du Québec (FPPQ), Québec, Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajjamada C. Kushalappa.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 295 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bollina, V., Kushalappa, A.C., Choo, T.M. et al. Identification of metabolites related to mechanisms of resistance in barley against Fusarium graminearum, based on mass spectrometry. Plant Mol Biol 77, 355 (2011). https://doi.org/10.1007/s11103-011-9815-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11103-011-9815-8

Keywords

Navigation