Skip to main content
Log in

Compatible GLRaV-3 viral infections affect berry ripening decreasing sugar accumulation and anthocyanin biosynthesis in Vitis vinifera

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Virus infections in grapevine cause important economic losses and affect fruit quality worldwide. Although the phenotypic symptoms associated to viral infections have been described, the molecular plant response triggered by virus infection is still poorly understood in Vitis vinifera. As a first step to understand the fruit changes and mechanisms involved in the compatible grapevine-virus interaction, we analyzed the berry transcriptome in two stages of development in the red wine cultivar Cabernet Sauvignon infected with Grapevine leaf-roll-associated virus-3 (GLRaV-3). Analysis of global gene expression patterns indicate incomplete berry maturation in infected berries as compared to uninfected fruit suggesting viral infection interrupts the normal berry maturation process. Genes with altered expression in berries harvested from GLRaV-3-infected vines as compared to uninfected tissue include anthocyanin biosynthesis and sugar metabolism genes. The reduction in transcript accumulation for sugar and anthocyanin metabolism during fruit development is consistent with a dramatic reduction in anthocyanin biosynthesis as well as reduced sugar levels in berries, a hallmark phenotypic change observed in virus infected grapevines. Analysis of key regulatory factors provides a mechanism for the observed gene expression changes. Our results provide insight into commonly observed phenotypic alterations in virus infected vines and the molecular mechanisms associated with the plant response to the virus during berry ripening.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Afoufa-Bastien D, Medici A, Jeauffre J, Coutos-Thévenot P, Lemoine R, Atanassova R, Laloi M (2010) The Vitis vinifera sugar transporter gene family: phylogenetic overview and macroarray expression profiling. BMC Plant Biol 10:245

    Article  PubMed  Google Scholar 

  • Ascencio-Ibáñez JT, Sozzani R, Lee TJ, Chu TM, Wolfinger RD, Cella R, Hanley-Bowdoin L (2008) Global analysis of Arabidopsis gene expression uncovers a complex array of changes impacting pathogen response and cell cycle during geminivirus infection. Plant Physiol 148:436–454

    Article  PubMed  Google Scholar 

  • Atanassova R, Leterrier M, Gaillard C, Agasse A, Sagot E, Coutos-Thevenot P, Delrot S (2003) Sugar-regulated expression of a putative hexose transport gene in grape. Plant Physiol 131:326–334

    Article  PubMed  CAS  Google Scholar 

  • Babu M, Gagarinova AG, Brandle JE, Wang A (2008) Association of the transcriptional response of soybean plants with soybean mosaic virus systemic infection. J Gen Virol 89:1069–1080

    Article  PubMed  CAS  Google Scholar 

  • Bell E, Mullet JE (1993) Characterization of an Arabidopsis lipoxygenase gene responsive to methyl jasmonate and wounding. Plant Physiol 103:1133–1137

    Article  PubMed  CAS  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B 57:289–300

    Google Scholar 

  • Bernstein E, Caudy AA, Hammond SM, Hannon GJ (2001) Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409:363–366

    Article  PubMed  CAS  Google Scholar 

  • Blevins T, Rajeswaran R, Shivaprasad PV, Beknazariants D, Si-Ammour A, Park HS, Vazquez F, Robertson D, Meins F Jr, Hohn T, Pooggin MM (2006) Four plant Dicers mediate viral small RNA biogenesis and DNA virus induced silencing. Nucleic Acids Res 34:6233–6246

    Article  PubMed  CAS  Google Scholar 

  • Borgo M, Angelini E (2002) Influence of grapevine leafroll (GLRaV3) on Merlot cv. grape production. Bulletin OIV 75:611–622

    CAS  Google Scholar 

  • Boss PK, Davies C, Robinson SP (1996) Analysis of the expression of anthocyanin pathway genes in developing Vitis vinifera L. cv Shiraz grape berries and the implications for pathway regulation. Plant Physiol 111:1059–1066

    PubMed  CAS  Google Scholar 

  • Breitling R, Armengaud P, Amtmann A, Herzyk P (2004) Rank products: a simple, yet powerful, new method to detect differentially regulated genes in replicated microarray experiments. FEBS Lett 573:83–92

    Article  PubMed  CAS  Google Scholar 

  • Bustin SA (2010) Why the need for qPCR publication guidelines?-The case for MIQE. Methods 50:217–226

    Article  PubMed  CAS  Google Scholar 

  • Castellarin SD, Matthews MA, Di Gaspero G, Gambetta GA (2007) Water deficits accelerate ripening and induce changes in gene expression regulating flavonoid biosynthesis in grape berries. Planta 227:101–112

    Article  PubMed  CAS  Google Scholar 

  • Cheng NH, Su CL, Carter SA, Nelson RS (2000) Vascular invasion routes and systemic accumulation patterns of tobacco mosaic virus in Nicotiana benthamiana. Plant J 23:349–362

    Article  PubMed  CAS  Google Scholar 

  • Christie P, Alfenito MR, Walbot V (1994) Impact of low temperature stress on general phenylpropanoid and anthocyanin pathways: enhancement of transcript abundance and anthocyanin pigmentation in maize seedlings. Planta 194:541–549

    Article  CAS  Google Scholar 

  • Christov I, Stefanov D, Velinov T, Goltsev V, Georgieva K, Abracheva P, Genova Y, Christov N (2007) The symptomless leaf infection with grapevine leafroll associated virus 3 in grown in vitro plants as a simple model system for investigation of viral effects on photosynthesis. J Plant Physiol 164:1124–1133

    Article  PubMed  CAS  Google Scholar 

  • Coetzee B, Freeborough MJ, Maree HJ, Celton JM, Rees DJ, Burger JT (2010) Deep sequencing analysis of viruses infecting grapevines: virome of a vineyard. Virology 400:157–163

    Article  PubMed  CAS  Google Scholar 

  • Cogotzi L, Giampetruzzi A, Nölke G, Orecchia M, Elicio V, Castellano MA, Martelli GP, Fischer R, Schillberg S, Saldarelli P (2009) An assay for the detection of grapevine leafroll-associated virus 3 using a single-chain fragment variable antibody. Arch Virol 154(1):19–26

    Article  PubMed  CAS  Google Scholar 

  • Conde C, Agasse A, Glissant D, Tavares R, Geros H, Delrot S (2006) Pathways of glucose regulation of monosaccharide transport in grape cells. Plant Physiol 141:1563–1577

    Article  PubMed  CAS  Google Scholar 

  • Coombe BG (1992) Research on development and ripening of the grape berry. Am J Enol Vitic 43:101–110

    Google Scholar 

  • Coombe BG (1995) Adoption of a system for identifiying grapevine growth stages. Aust J Grape Wine Res 1:100–110

    Article  Google Scholar 

  • Coombe BG, McCarthy MG (2000) Dynamics of grape berry growth and physiology of ripening. Aust J Grape Wine Res 6:131–135

    Article  Google Scholar 

  • Cui X, Fan B, Scholz J, Chen Z (2007) Roles of Arabidopsis cyclin-dependent kinase C complexes in cauliflower mosaic virus infection, plant growth, and development. Plant Cell 19:1388–1402

    Article  PubMed  CAS  Google Scholar 

  • da Silva FG, Iandolino A, Al-Kayal F, Bohlmann MC, Cushman MA, Lim H, Ergul A, Figueroa R, Kabuloglu EK, Osborne C, Rowe J, Tattersall E, Leslie A, Xu J, Baek J, Cramer GR, Cushman JC, Cook DR (2005) Characterizing the grape transcriptome. Analysis of expressed sequence tags from multiple Vitis species and development of a compendium of gene expression during berry development. Plant Physiol 139:574–597

    Article  PubMed  Google Scholar 

  • Deluc LG, Grimplet J, Wheatley MD, Tillett RL, Quilici DR, Osborne C, Schooley DA, Schlauch KA, Cushman JC, Cramer GR (2007) Transcriptomic and metabolite analyses of Cabernet Sauvignon grape berry development. BMC Genomics 8:429

    Article  PubMed  Google Scholar 

  • Deluc LG, Quilici DR, Decendit A, Grimplet J, Wheatley MD, Schlauch KA, Merillon JM, Cushman JC, Cramer GR (2009) Water deficit alters differentially metabolic pathways affecting important flavor and quality traits in grape berries of Cabernet Sauvignon and Chardonnay. BMC Genomics 10:212

    Article  PubMed  Google Scholar 

  • Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 95:14863–14868

    Article  PubMed  CAS  Google Scholar 

  • Epstein MA, Holt SJ (1963) Electron microscope observations on the surface adenosine triphosphatase-like enzymes of HeLa cells infected with herpes virus. J Cell Biol 19:337–347

    Article  PubMed  CAS  Google Scholar 

  • Espinoza C, Medina C, Somerville S, Arce-Johnson P (2007a) Senescence-associated genes induced during compatible viral interactions with grapevine and Arabidopsis. J Exp Bot 58:3197–3212

    Article  PubMed  CAS  Google Scholar 

  • Espinoza C, Vega A, Medina C, Schlauch K, Cramer G, Arce-Johnson P (2007b) Gene expression associated with compatible viral diseases in grapevine cultivars. Funct Integr Genomics 7:95–110

    Article  PubMed  CAS  Google Scholar 

  • Fiore N, Prodan S, Montealegre J, Aballay E, Pino AM, Zamorano A (2008) Survey of grapevine viruses in chile. J Plant Pathol 90:125–130

    CAS  Google Scholar 

  • Fotopoulos V, Gilbert MJ, Pittman JK, Marvier AC, Buchanan AJ, Sauer N, Hall JL, Williams LE (2003) The monosaccharide transporter gene, AtSTP4, and the cell-wall invertase, Atbetafruct1, are induced in Arabidopsis during infection with the fungal biotroph Erysiphe cichoracearum. Plant Physiol 132:821–829

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Rodriguez Pozo, Azcon-Aguilar Ferrol (2005) Expression of a tomato sugar transporter is increased in leaves of mycorrhizal or Phytophthora parasitica-infected plants. Mycorrhiza 15:489–496

    Article  PubMed  CAS  Google Scholar 

  • Gautier L, Cope L, Bolstad BM, Irizarry RA (2004) affy—analysis of Affymetrix GeneChip data at the probe level. Bioinformatics 20:307–315

    Article  PubMed  CAS  Google Scholar 

  • Gollop R, Farhi S, Perl A (2001) Regulation of the leucoanthocyanidin dioxygenase gene expression in Vitis vinifera. Plant Sci 161:579–588

    Article  CAS  Google Scholar 

  • Gollop R, Even S, Colova-Tsolova V, Perl A (2002) Expression of the grape dihydroflavonol reductase gene and analysis of its promoter region. J Exp Bot 53:1397–1409

    Article  PubMed  CAS  Google Scholar 

  • Gosalvez-Bernal B, Genoves A, Navarro JA, Pallas V, Sanchez-Pina MA (2008) Distribution and pathway for phloem-dependent movement of Melon necrotic spot virus in melon plants. Mol Plant Pathol 9:447–461

    Article  PubMed  Google Scholar 

  • Grimplet J, Deluc LG, Tillett RL, Wheatley MD, Schlauch KA, Cramer GR, Cushman JC (2007) Tissue-specific mRNA expression profiling in grape berry tissues. BMC Genomics 8:187

    Google Scholar 

  • Gutha LR, Casassa LF, Harbertson JF, Naidu RA (2010) Modulation of flavonoid biosynthetic pathway genes and anthocyanins due to virus infection in grapevine (Vitis vinifera L.) leaves. BMC Plant Biol 10:187–204

    Article  PubMed  Google Scholar 

  • Hayes MA, Davies C, Dry IB (2007) Isolation, functional characterization, and expression analysis of grapevine (Vitis vinifera L.) hexose transporters: differential roles in sink and source tissues. J Exp Bot 58:1985–1997

    Article  PubMed  CAS  Google Scholar 

  • Hayes MA, Feechan A, Dry IB (2010) Involvement of abscisic acid in the coordinated regulation of a stress-inducible hexose transporter (VvHT5) and a cell wall invertase in grapevine in response to biotrophic fungal infection. Plant Physiol 153:211–221

    Article  PubMed  CAS  Google Scholar 

  • Hümmer W, Schreier P (2008) Analysis of proanthocyanidins. Mol Nutr Food Res 52:1381–1398

    Article  PubMed  Google Scholar 

  • Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, Speed TP (2003) Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4:249–264

    Article  PubMed  Google Scholar 

  • Jensen AB, Raventos D, Mundy J (2002) Fusion genetic analysis of jasmonate-signalling mutants in Arabidopsis. Plant J 29:595–606

    Article  PubMed  CAS  Google Scholar 

  • Johansen DA (1940) Plant microtechnique. Mac Graw Hill, NY, USA, pp 523

  • Katari MS, Nowicki SD, Aceituno FF, Nero D, Kelfer J, Thompson LP, Cabello JM, Davidson RS, Goldberg AP, Shasha DE, Coruzzi GM, Gutiérrez RA (2010) VirtualPlant: a software platform to support systems biology research. Plant Physiol 152:500–515

    Article  PubMed  CAS  Google Scholar 

  • Kirik A, Mudgett MB (2009) SOBER1 phospholipase activity suppresses phosphatidic acid accumulation and plant immunity in response to bacterial effector AvrBsT. Proc Natl Acad Sci USA 106:20532–20537

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi S, Ishimaru M, Hiraoka K, Honda C (2002) Myb-related genes of the Kyoho grape (Vitis labruscana) regulate anthocyanin biosynthesis. Planta 215:924–933

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi S, Goto-Yamamoto N, Hirochika H (2004) Retrotransposon-induced mutations in grape skin color. Science 304:982

    Article  PubMed  Google Scholar 

  • Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, Antonescu C, Salzberg SL (2004) Versatile and open software for comparing large genomes. Genome Biol 5:R12

    Article  PubMed  Google Scholar 

  • La Camera S, Balagué C, Göbel C, Geoffroy P, Legrand M, Feussner I, Roby D, Heitz T (2008) The Arabidopsis patatin-like protein 2 (PLP2) plays an essential role in cell death execution and differentially affects biosynthesis of oxylipins and resistance to pathogens. Mol Plant Microbe Interact 22:469–481

    Article  Google Scholar 

  • Lartey R, Ghoshroy S, Ho J, Citovsky V (1997) Movement and subcellular localization of a tobamovirus in Arabidopsis. Plant J 12:537–545

    Article  PubMed  CAS  Google Scholar 

  • Ling KS, Zhu HY, Gonsalves D (2004) Complete nucleotide sequence and genome organization of grapevine leafroll-associated virus 3, type member of the genus Ampelovirus. J Gen Virol 85:2099–2102

    Article  PubMed  CAS  Google Scholar 

  • Lo Piero AR, Puglisi I, Rapisarda P, Petrone G (2005) Anthocyanins accumulation and related gene expression in red orange fruit induced by low temperature storage. J Agric Food Chem 53:9083–9088

    Article  PubMed  CAS  Google Scholar 

  • Lund ST, Peng FY, Nayar T, Reid KE, Schlosser J (2008) Gene expression analyses in individual grape (Vitis vinifera L.) berries during ripening initiation reveal that pigmentation intensity is a valid indicator of developmental staging within the cluster. Plant Mol Biol 68:301–315

    Article  PubMed  CAS  Google Scholar 

  • Martelli G (1993) True virus diseases. Leafroll. In: Martelli G (ed) Graft-transmissible diseases of grapevines. Handbook for detection and diagnosis. FAO, Rome, pp 37–44

  • Martelli G, Boudon-Padieu E (2006) Directory of infectious diseases of grapevines and viroses and virus-like diseases of the grapevine. Options Medit Ser B 55:7–201

    Google Scholar 

  • Martelli G, Walter B (1998) Virus certification in grapevines. In: Hadidi A, Khetarpal R, Koganezawa H (eds) Plant virus disease control. APS Press, St. Paul, p 684

    Google Scholar 

  • Matus JT, Vega A, Loyola R, Serrano C, Cabrera S, Arce-Johnson P (2008) Phytoplasma and virus detection in commercial plantings of Vitis vinifera cv. Merlot exhibiting premature berry dehydration. Electron J Biotechnol 11(5):7–8

    Google Scholar 

  • Matus JT, Loyola R, Vega A, Pena-Neira A, Bordeu E, Arce-Johnson P, Alcalde JA (2009) Post-veraison sunlight exposure induces MYB-mediated transcriptional regulation of anthocyanin and flavonol synthesis in berry skins of Vitis vinifera. J Exp Bot 60:853–867

    Article  PubMed  CAS  Google Scholar 

  • Mori K, Goto-Yamamoto N, Kitayama M, Hashizume K (2007) Loss of anthocyanins in red-wine grape under high temperature. J Exp Bot 58:1935–1945

    Article  PubMed  CAS  Google Scholar 

  • Orecchia M, Nölke G, Saldarelli P, Dell’Orco M, Uhde-Holzem K, Sack M, Martelli G, Fischer R, Schillberg S (2008) Generation and characterization of a recombinant antibody fragment that binds to the coat protein of grapevine leafroll-associated virus 3. Arch Virol 153(6):1075–1084

    Article  PubMed  CAS  Google Scholar 

  • Peña-Neira A, Hernández T, García-Vallejo C, Estrella I, Suarez JA (2000) A survey of phenolic compounds in Spanish wines from different geographical origins. Eur Food Res Technol 210:445–448

    Article  Google Scholar 

  • Peña-Neira A, Dueñas M, Duarte A, Hernandez T, Estrella I, Loyola E (2004) Effects of ripening stages and of plant vegetative vigor on the phenolic composition of grapes (Vitis vinifera L.) cv. Cabernet Sauvignon in the Maipo Valley (Chile). Vitis 43:51–57

    Google Scholar 

  • Peña-Neira A, Cáceres A, Pastenes C (2007) Low molecular weight phenolic and anthocyanin composition of grape skins from cv. Syrah (Vitis vinifera L.) in the Maipo Valley (Chile): effect of clusters thinning and vineyard yield. Food Sci Technol Int 13:153–158

    Article  Google Scholar 

  • Pilati S, Perazzolli M, Malossini A, Cestaro A, Dematte L, Fontana P, Dal Ri A, Viola R, Velasco R, Moser C (2007) Genome-wide transcriptional analysis of grapevine berry ripening reveals a set of genes similarly modulated during three seasons and the occurrence of an oxidative burst at veraison. BMC Genomics 8:428

    Article  PubMed  Google Scholar 

  • Pollard KS, Laan vd (2004) Choice of a null distribution in resampling-based multiple testing. J Stat Plan Inference 125:85–100

    Article  Google Scholar 

  • Reynolds ES (1963) The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol 17:208–212

    Article  PubMed  CAS  Google Scholar 

  • Rotter A, Camps C, Lohse M, Kappel C, Pilati S, Hren M, Stitt M, Coutos-Thevenot P, Moser C, Usadel B, Delrot S, Gruden K (2009) Gene expression profiling in susceptible interaction of grapevine with its fungal pathogen Eutypa lata: extending MapMan ontology for grapevine. BMC Plant Biol 9:104

    Article  PubMed  Google Scholar 

  • Shalitin D, Wolf S (2000) Cucumber mosaic virus infection affects sugar transport in melon plants. Plant Physiol 123:597–604

    Article  PubMed  CAS  Google Scholar 

  • Shimizu T, Satoh K, Kikuchi S, Omura T (2007) The repression of cell wall- and plastid-related genes and the induction of defenserelated genes in rice plants infected with rice dwarf virus. Mol Plant Microbe Interact 20:247–254

    Google Scholar 

  • Solfanelli C, Poggi A, Loreti E, Alpi A, Perata P (2006) Sucrose-specific induction of the anthocyanin biosynthetic pathway in Arabidopsis. Plant Physiol 140:637–646

    Article  PubMed  CAS  Google Scholar 

  • Teng S, Keurentjes J, Bentsink L, Koornneef M, Smeekens S (2005) Sucrose-specific induction of anthocyanin biosynthesis in Arabidopsis requires the MYB75/PAP1 gene. Plant Physiol 139:1840–1852

    Article  PubMed  CAS  Google Scholar 

  • Terrier N, Glissant D, Grimplet J, Barrieu F, Abbal P, Couture C, Ageorges A, Atanassova R, Leon C, Renaudin JP, Dedaldechamp F, Romieu C, Delrot S, Hamdi S (2005) Isogene specific oligo arrays reveal multifaceted changes in gene expression during grape berry (Vitis vinifera L.) development. Planta 222:832–847

    Article  PubMed  CAS  Google Scholar 

  • Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:1465–6906

    Article  Google Scholar 

  • Venencie C, Uveira MN, Guiet S (1997) Maturité polyphénolique du raisin mise en place d’une méthode d’analyse de routine. Revue Francaise d’Oenologie 167:36–41

    CAS  Google Scholar 

  • Vignault C, Vachaud M, Cakir B, Glissant D, Dedaldechamp F, Buttner M, Atanassova R, Fleurat-Lessard P, Lemoine R, Delrot S (2005) VvHT1 encodes a monosaccharide transporter expressed in the conducting complex of the grape berry phloem. J Exp Bot 56:1409–1418

    Article  PubMed  CAS  Google Scholar 

  • Vitrac X, Larronde F, Krisa S, Decendit A, Deffieux G, Merillon JM (2000) Sugar sensing and Ca2+-calmodulin requirement in Vitis vinifera cells producing anthocyanins. Phytochemistry 53:659–665

    Article  PubMed  CAS  Google Scholar 

  • Walker AR, Lee E, Bogs J, McDavid DA, Thomas MR, Robinson SP (2007) White grapes arose through the mutation of two similar and adjacent regulatory genes. Plant J 49:772–785

    Article  PubMed  CAS  Google Scholar 

  • Whitham SA, Quan S, Chang HS, Cooper B, Estes B, Zhu T, Wang X, Hou YM (2003) Diverse RNA viruses elicit the expression of common sets of genes in susceptible Arabidopsis thaliana plants. Plant J 33:271–283

    Article  PubMed  CAS  Google Scholar 

  • Whitham SA, Yang C, Goodin MM (2006) Global impact: elucidating plant responses to viral infection. Mol Plant Microbe Interact 19:1207–1215

    Article  PubMed  CAS  Google Scholar 

  • Wise RP, Caldo RA, Hong L, Shen L, Cannon EK, Dickerson JA (2007) BarleyBase/PLEXdb: a unified expression profiling database for plants and plant pathogens. In: Edwards D (ed) Plant bioinformatics—methods and protocols. Methods in molecular biology, vol 406. Humana Press, Totowa, NJ, pp 347–363

  • Yamane T, Jeong ST, Goto-Yamamoto N, Koshita Y, Kobayashi S (2006) Effects of temperature on anthocyanin biosynthesis in grape berry skins. Am J Enol Vitic 57:54–59

    CAS  Google Scholar 

  • Zenoni S, Ferrarini A, Giacomelli E, Xumerle L, Fasoli M, Malerba G, Bellin D, Pezzotti M, Delledonne M (2010) Characterization of transcriptional complexity during berry development in Vitis vinifera using RNA-Seq. Plant Physiol 152:1787–1795

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by CORFO-Innova 07Genoma01, Millennium Nucleus for Plant Functional Genomics (P06-009-F) and FONDECYT 1100709. We are grateful to Dr. Michael Handford (Universidad de Chile) for critically reading the manuscript and assistance in language support. We also thank Hector Morales for his contribution in HPLC-DAD analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricio Arce-Johnson.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 79 kb)

Figure S1

Detection of viral disease in uninfected and GLRaV-3-infected vines. The evaluation of thirteen viruses that have a high infectious incidence in Chile was carried out by RT-PCR amplifying a specific fragment of each virus. The figure shown one example of the detection of GLRaV-3 and GFKV viral disease (A) in Vitis vinifera leaves. A fragment of the virus replicase was amplified (274 bp and 262 bp, respectively). Lane numbers represent different grapevines analyzed. All amplifications were done in similar conditions for the viruses. Transmission electron micrographs of cross-sections of (B) a berry, (C) a virus-infected phloem cell and (D) a healthy virus-free phloem cell. Each micrograph scale is represented with a black line (500 nm) depicted at the bottom of each figure (PPTX 4392 kb)

Figure S2

Hierarchical clustering analysis of grape berries genes showing a differential expression pattern in response to GLRaV-3 during ripening (p < 0.05). The dendrogram and coloured image were produced as described in the Materials and Methods. The color scale ranges from saturated green for log ratios -5.8 and below, to saturated red for log ratios +5.5 and above. Each gene is represented by a single row of colored boxes. A single column represents each experimental point as follows: infected berries at veraison (LR3 V, yellow), uninfected berries at veraison (CV, green) infected ripening berries (LR3M, pink) and uninfected ripening berries (CM, purple). Twelve separate clusters are indicated by colored vertical bars (correlation coefficient < 0.92) (PPTX 1657 kb)

Table S1

Primers designed for virus detection in grapevine plants (DOCX 86 kb)

Table S2

Primers designed for gene expression analysis by RT-qPCR (DOCX 107 kb)

Table S3

Genes affected by ripening in uninfected grape berries (XLS 106 kb)

Table S4

Genes affected by ripening in GLRaV-3 infected grape berries (XLS 74 kb)

Table S5

Genes affected by viral compatible infection in grape berries at veraison (E-L35) (XLS 39 kb)

Table S6

Genes affected by viral compatible infection in grape berries during ripening (EL38) (XLS 70 kb)

Table S7

Physiological analysis of Cabernet Sauvignon berries from uninfected and infected-plants at four berry developmental stages (DOC 31 kb)

Table S8

Concentration of all anthocyanin compounds from uninfected and infected at four berry developmental stages (DOCX 44 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vega, A., Gutiérrez, R.A., Peña-Neira, A. et al. Compatible GLRaV-3 viral infections affect berry ripening decreasing sugar accumulation and anthocyanin biosynthesis in Vitis vinifera . Plant Mol Biol 77, 261–274 (2011). https://doi.org/10.1007/s11103-011-9807-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-011-9807-8

Keywords

Navigation