Skip to main content
Log in

Chemistry and occurrence of hydroxycinnamate oligomers

  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

Hydroxycinnamates such as ferulic acid, sinapic acid and p-coumaric acid ester-linked to plant cell wall polymers may act as cross-links between polysaccharides to each other, but also to proteins and lignin. Although sinapates and p-coumarates also form cell wall cross-links by the formation of radically or photochemically formed dimers, ferulate derivatives are the quantitatively most important cross-links in the plant cell wall. While the first radically generated ferulate dimer was already identified almost 40 years ago, the spectrum of known ferulate dimers was considerably broadened within the last 15 years. Higher ferulate oligomers were generated in model systems, but also isolated from plant materials. Different model systems using either free hydroxycinnamic acids or their esters are reviewed, highlighting a discussion of the relevance of these models for the plant cell wall. The first ferulate trimer from plant material was discovered in 2003 and seven dehydrotrimers of ferulic acid were isolated from maize bran since. Some of these trimers were also identified in other plant materials such as wheat and rye grains, corn stover, sugar beet and asparagus. Formation mechanisms of ferulate trimers and implications for the plant cell wall are discussed. Ferulate tetramers are the highest oligomers isolated from plant materials so far. These compounds can theoretically cross-link up to four polysaccharide chains, assuming all cross-links are formed intermolecularly. Formation of intramolecular versus intermolecular polysaccharide cross-links is a key question to be answered in the future if we want to judge properly the importance of hydroxycinnamate cross-links in the plant cell wall.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

c:

Cyclic form

dc:

Decarboxylated form

DFA:

Dehydrodiferulic acid

nc:

Open form (non-cyclic)

THF:

Tetrahydrofuran form

TriFA:

Triferulic acid

TetraFA:

Tetraferulic acid

References

  • Abdel-Massih RM, Baydoun EA-H, Waldron K, Brett CT (2007) Effects of partial enzymic degradation of sugar beet pectin on oxidative coupling of pectin-linked ferulates in vitro. Phytochemistry 68:1785–1790

    CAS  PubMed  Google Scholar 

  • Allerdings E, Ralph J, Schatz PF, Gniechwitz D, Steinhart H, Bunzel M (2005) Isolation and structural identification of diarabinosyl 8-O-4-dehydrodiferulate from maize bran insoluble fibre. Phytochemistry 66:113–124

    CAS  PubMed  Google Scholar 

  • Allerdings E, Ralph J, Steinhart H, Bunzel M (2006) Isolation and structural identification of complex feruloylated heteroxylan side-chains from maize bran. Phytochemistry 67:1276–1286

    CAS  PubMed  Google Scholar 

  • Andreasen MF, Christensen LP, Meyer AS, Hansen A (2000) Ferulic acid dehydrodimers in rye (Secale cereale L.). J Cereal Sci 31:303–307

    CAS  Google Scholar 

  • Antoine C, Peyron S, Lullien-Pellerin V, Abecassis J, Rouau X (2004) Wheat bran tissue fractionation using biochemical markers. J Cereal Sci 39:387–393

    CAS  Google Scholar 

  • Arrieta-Baez D, Stark RE (2006) Modeling suberization with peroxidase-catalyzed polymerization of hydroxycinnamic acids: cross-coupling and dimerization reactions. Phytochemistry 67:743–753

    CAS  PubMed  Google Scholar 

  • Azuma T, Okita N, Nanmori T, Yasuda T (2005) Relationship between the deposition of phenolic acids in the cell walls and the cessation of rapid growth in internodes of floating rice. Plant Prod Sci 8:447–453

    CAS  Google Scholar 

  • Barberousse H, Roiseux O, Robert C, Paquot M, Deroanne C, Blecker C (2008) Analytical methodologies for quantification of ferulic acid and its oligomers. J Sci Food Agric 88:1494–1511

    CAS  Google Scholar 

  • Barron C, Surget A, Rouau X (2007) Relative amounts of tissues in mature wheat (Triticum aestivum L.) grain and their carbohydrate and phenolic acid composition. J Cereal Sci 45:88–96

    CAS  Google Scholar 

  • Baydoun EA-H, Pavlencheva N, Cumming CM, Waldron KW, Brett CT (2004) Control of dehydrodiferulate cross-linking in pectins from sugar-beet tissues. Phytochemistry 65:1107–1115

    CAS  PubMed  Google Scholar 

  • Bily AC, Reid LM, Taylor JH, Johnston D, Malouin C, Burt AJ, Bakan B, Regnault-Roger C, Pauls KP, Arnason JT, Philogene BJR (2003) Dehydrodimers of ferulic acid in maize grain pericarp and aleurone: resistance factors to Fusarium graminearum. Phytopathol 93:712–719

    CAS  Google Scholar 

  • Boeriu CG, Oudgenoeg G, Spekking WTJ, Berendsen LBJM, Vancon L, Boumans H, Gruppen H, van Berkel WJH, Laane C, Voragen AGJ (2004) Horseradish peroxidase-catalyzed cross-linking of feruloylated arabinoxylans with beta-caseins. J Agric Food Chem 52:6633–6639

    CAS  PubMed  Google Scholar 

  • Bunzel M, Ralph J, Marita J, Steinhart H (2000) Identification of 4-O-5′-coupled diferulic acid from insoluble cereal fiber. J Agric Food Chem 48:3166–3169

    CAS  PubMed  Google Scholar 

  • Bunzel M, Ralph J, Marita JM, Hatfield RD, Steinhart H (2001) Diferulates as structural components in soluble and insoluble cereal dietary fibre. J Sci Food Agric 81:653–660

    CAS  Google Scholar 

  • Bunzel M, Allerdings E, Sinnwell V, Ralph J, Steinhart H (2002) Cell wall hydroxycinnamates in wild rice (Zizania aquatica L.) insoluble dietary fibre. Eur Food Res Technol 214:482–488

    CAS  Google Scholar 

  • Bunzel M, Ralph J, Funk C, Steinhart H (2003a) Isolation and identification of a ferulic acid dehydrotrimer from saponified maize bran insoluble fiber. Eur Food Res Technol 217:128–133

    CAS  Google Scholar 

  • Bunzel M, Ralph J, Kim H, Lu F, Ralph SA, Marita JM, Hatfield RD, Steinhart H (2003b) Sinapate dehydrodimers and sinapate-ferulate heterodimers in cereal dietary fiber. J Agric Food Chem 51:1427–1434

    CAS  PubMed  Google Scholar 

  • Bunzel M, Funk C, Steinhart H (2004a) Semipreparative isolation of dehydrodiferulic and dehydrotriferulic acids as standard substances from maize bran. J Sep Sci 27:1080–1086

    CAS  PubMed  Google Scholar 

  • Bunzel M, Ralph J, Steinhart H (2004b) Phenolic compounds as cross-links of plant derived polysaccharides. Czech J Food Sci 22:64–67

    CAS  Google Scholar 

  • Bunzel M, Ralph J, Lu F, Hatfield RD, Steinhart H (2004c) Lignins and ferulate-coniferyl alcohol cross-coupling products in cereal grains. J Agric Food Chem 52:6496–6502

    CAS  PubMed  Google Scholar 

  • Bunzel M, Ralph J, Funk C, Steinhart H (2005) Structural elucidation of new ferulic acid-containing phenolic dimers and trimers isolated from maize bran. Tetrahedron Lett 46:5845–5850

    CAS  Google Scholar 

  • Bunzel M, Ralph J, Brüning P, Steinhart H (2006) Structural identification of dehydrotriferulic and dehydrotetraferulic acids from insoluble maize bran fiber. J Agric Food Chem 54:6409–6418

    CAS  PubMed  Google Scholar 

  • Bunzel M, Allerdings E, Ralph J, Steinhart H (2008a) Cross-linking of arabinoxylans via 8–8-coupled diferulates as demonstrated by isolation and identification of diarabinosyl 8–8(cyclic)-dehydrodiferulate from maize bran. J Cereal Sci 47:29–40

    CAS  Google Scholar 

  • Bunzel M, Heuermann B, Kim H, Ralph J (2008b) Peroxidase-catalyzed oligomerization of ferulic acid esters. J Agric Food Chem 56:10368–10375

    CAS  PubMed  Google Scholar 

  • Carvajal-Millan E, Guilbert S, Morel MH, Micard V (2005a) Impact of the structure of arabinoxylan gels on their rheological and protein transport properties. Carbohydr Polym 60:431–438

    CAS  Google Scholar 

  • Carvajal-Millan E, Guigliarelli B, Belle V, Rouau X, Micard V (2005b) Storage stability of laccase induced arabinoxylan gels. Carbohydr Polym 59:181–188

    CAS  Google Scholar 

  • Carvajal-Millan E, Landillon V, Morel M-H, Rouau X, Doublier J-L, Micard V (2005c) Arabinoxylan gels: impact of the feruloylation degree on their structure and properties. Biomacromolecules 6:309–317

    CAS  PubMed  Google Scholar 

  • Carvajal-Millan E, Guilbert S, Doublier J-L, Micard V (2006) Arabinoxylan/protein gels: structural, rheological and controlled release properties. Food Hydrocolloid 20:53–61

    CAS  Google Scholar 

  • Cyran MR, Saulnier L (2005) Cell wall fractions isolated from outer layers of rye grain by sequential treatment with alpha-amylase and proteinase: structural investigation of polymers in two ryes with contrasting breadmaking quality. J Agric Food Chem 53:9213–9224

    CAS  PubMed  Google Scholar 

  • Dervilly-Pinel G, Thibault JF, Saulnier L (2001) Experimental evidence for a semi-flexible conformation for arabinoxylans. Carbohydr Res 330:365–372

    CAS  PubMed  Google Scholar 

  • Dobberstein D, Steinhart H, Bunzel M (2006) Bestimmung mono-, di- und trimerer Phenolcarbonsäuren pflanzlicher Herkunft (Determination of mono-, di- and trimeric phenolic acids from plant origin), Abstract. Lebensmittelchemie 60:101–102

    Google Scholar 

  • El Agha A, Makris DP, Kefalas P (2008) Hydrocaffeic acid oxidation by a peroxidase homogenate from onion solid wastes. Eur Food Res Technol 227:1379–1386

    CAS  Google Scholar 

  • Ferguson LR, Lim IF, Pearson AE, Ralph J, Harris PJ (2003) Bacterial antimutagenesis by hydroxycinnamic acids from plant cell walls. Mutation Res 542:49–58

    CAS  PubMed  Google Scholar 

  • Flander L, Rouau X, Morel MH, Autio K, Seppanen-Laakso T, Kruus K, Buchert J (2008) Effects of laccase and xylanase on the chemical and rheological properties of oat and wheat doughs. J Agric Food Chem 56:5732–5742

    CAS  PubMed  Google Scholar 

  • Ford CW, Hartley RD (1989) GC/MS characterisation of cyclodimers from p-coumaric and ferulic acids by photodimerisation—a possible factor influencing cell wall biodegradability. J Sci Food Agric 46:301–310

    CAS  Google Scholar 

  • Ford CW, Hartley RD (1990) Cyclodimers of p-coumaric and ferulic acids in the cell walls of tropical grasses. J Sci Food Agric 50:29–43

    CAS  Google Scholar 

  • Fry SC (2004) Oxidative coupling of tyrosine and ferulic acid residues: intra- and extra-protoplasmic occurrence, predominance of trimers and larger products, and possible role in inter-polymeric cross-linking. Phytochem Rev 3:97–111

    CAS  Google Scholar 

  • Fry SC, Willis SC, Paterson AEJ (2000) Intraprotoplasmic and wall-localised formation of arabinoxylan-bound diferulates and larger ferulate coupling-products in maize cell-suspension cultures. Planta 211:679–692

    CAS  PubMed  Google Scholar 

  • Funk C, Ralph J, Steinhart H, Bunzel M (2005) Isolation and structural characterisation of 8–O–4/8–O–4- and 8–8/8–O–4-coupled dehydrotriferulic acids from maize bran. Phytochemistry 66:363–371

    CAS  PubMed  Google Scholar 

  • GarciaConesa MT, Plumb GW, Kroon PA, Wallace G, Williamson G (1997) Antioxidant properties of ferulic acid dimers. Redox Rep 3:239–244

    CAS  Google Scholar 

  • Geissmann T, Neukom H (1971) Vernetzung von Phenolcarbonsäureestern von Polysacchariden durch oxydative phenolische Kupplung. Helv Chim Acta 54:1108–1112

    CAS  Google Scholar 

  • Grabber JH (2005) How do lignin composition, structure, and cross-linking affect degradability? A review of cell wall model studies. Crop Sci 45:820–831

    CAS  Google Scholar 

  • Grabber JH, Hatfield RD, Ralph J, Zon J, Amrhein N (1995) Ferulate cross-linking in cell-walls isolated from maize cell-suspensions. Phytochemistry 40:1077–1082

    CAS  Google Scholar 

  • Grabber JH, Hatfield RD, Ralph J (1998) Diferulate cross-links impede the enzymatic degradation of non-lignified maize walls. J Sci Food Agric 77:193–200

    CAS  Google Scholar 

  • Grabber JH, Ralph J, Lapierre C, Barriere Y (2004) Genetic and molecular basis of grass cell-wall degradability. I. Lignin-cell wall interactions. CR Biologies 327:455–465

    CAS  Google Scholar 

  • Graf E (1992) Antioxidant potential of ferulic acid. Free Radical Biol Med 13:435–448

    CAS  Google Scholar 

  • Greffeuille V, Abecassis J, Lapierre C, Lullien-Pellerin V (2006) Bran size distribution at milling and mechanical and biochemical characterization of common wheat grain outer layers: a relationship assessment. Cereal Chem 83:641–646

    CAS  Google Scholar 

  • Greffeuille V, Mabille F, Rousset M, Oury F-X, Abecassis J, Lullien-Pellerin V (2007) Mechanical properties of outer layers from near-isogenic lines of common wheat differing in hardness J Cereal Sci 45:227–235

    CAS  Google Scholar 

  • Hartley RD, Morrison WHIII (1991) Monomeric and dimeric phenolic acids released from cell walls of grasses by sequential treatment with sodium hydroxide. J Sci Food Agric 55:365–375

    CAS  Google Scholar 

  • Hartley RD, Morrison WH, Himmelsbach DS, Borneman WS (1990a) Cross-linking of cell-wall phenolic arabinoxylans in gramineous plants. Phytochemistry 29:3705–3709

    CAS  Google Scholar 

  • Hartley RD, Morrison WH, Balza F, Towers GHN (1990b) Substituted truxillic and truxinic acids in cell walls of Cynodon dactylon. Phytochemistry 29:3699–3703

    CAS  Google Scholar 

  • Hartmann G, Piber M, Koehler P (2005) Isolation and chemical characterisation of water-extractable arabinoxylans from wheat and rye during breadmaking. Eur Food Res Technol 221:487–492

    CAS  Google Scholar 

  • Harukaze A, Sugiyama S, Iwamoto Y, Murata M, Homma S (2000) Convenient analysis and quantification of diferulic acids in foods. Food Sci Technol Res 6:122–125

    CAS  Google Scholar 

  • Hatfield RD, Ralph J (1999) Modelling the feasibilty of intramolecular dehydrodiferulate formation in grass walls. J Sci Food Agric 79:425–427

    CAS  Google Scholar 

  • Hatfield RD, Ralph J, Grabber JH (1999) Cell wall structural foundations: molecular basis for improving forage digestibilities. Crop Sci 39:27–37

    Article  CAS  Google Scholar 

  • Hatfield RD, Ralph J, Grabber JH (2008) A potential role for sinapyl p-coumarate as a radical transfer mechanism in grass lignin formation. Planta 228:919–928

    CAS  PubMed  Google Scholar 

  • Hemery Y, Lullien-Pellerin V, Rouau X, Abecassis J, Samson M-F, Aman P, von Reding W, Spoerndli C, Barron C (2009) Biochemical markers: efficient tools for the assessment of wheat grain tissue proportions in milling fractions. J Cereal Sci 49:55–64

    CAS  Google Scholar 

  • Hossain MT, Soga K, Wakabayashi K, Kamisaka S, Fujii S, Yamamoto R, Hoson T (2007) Modification of chemical properties of cell walls by silicon and its role in regulation of the cell wall extensibility in oat leaves. J Plant Physiol 164:385–393

    CAS  PubMed  Google Scholar 

  • Ishii T (1991) Isolation and characterization of a diferuloyl arabinoxylan hexasaccharide from bamboo shoot cell-walls. Carbohydr Res 219:15–22

    CAS  PubMed  Google Scholar 

  • Ishii T (1997) Structure and functions of feruloylated polysaccharides. Plant Sci 127:111–127

    CAS  Google Scholar 

  • Ishii T, Hiroi T (1990) Linkage of phenolic acids to cell-wall polysaccharides of bamboo shoot. Carbohydr Res 206:297–310

    CAS  PubMed  Google Scholar 

  • Jacquet G, Pollet B, Lapierre C, Mhamdi F, Rolando C (1995) New ether-linked ferulic acid-coniferyl alcohol dimers identified in grass straws. J Agric Food Chem 43:2746–2751

    CAS  Google Scholar 

  • Jaramillo S, Rodriguez R, Jimenez A, Guillen R, Fernandez-Bolanos J, Heredia A (2007) Effects of storage conditions on the accumulation of ferulic acid derivatives in white asparagus cell walls. J Sci Food Agric 82:286–296

    Google Scholar 

  • Jung H, Casler MD (2006) Maize stem tissues: impact of development on cell wall degradability. Crop Sci 46:1801–1809

    CAS  Google Scholar 

  • Kamisaka S, Takeda S, Takahashi K, Shibata K (1990) Diferulic and ferulic acid in the cell-wall of Avena coleoptiles—their relationships to mechanical properties of the cell-wall. Physiol Plant 78:1–7

    CAS  Google Scholar 

  • Kerr EM, Fry SC (2003) Pre-formed xyloglucans and xylans increase in molecular weight in three distinct compartments of a maize cell-suspension culture. Planta 217:327–339

    CAS  PubMed  Google Scholar 

  • Lindsay SE, Fry SC (2008) Control of diferulate formation in dicotyledonous and gramineous cell-suspension cultures. Planta 227:439–452

    CAS  PubMed  Google Scholar 

  • Liu H-L, Kong L-Y, Takaya Y, Niwa M (2005) Biotransformation of ferulic acid into two new dihydrotrimers by Momordica charantia peroxidase. Chem Pharm Bull 53:816–819

    CAS  PubMed  Google Scholar 

  • Liu H-L, Wan X, Huang X-F, Kong L-Y (2007a) Biotransformation of sinapic acid catalyzed by Momordica charantia peroxidase. J Agric Food Chem 55:1003–1008

    CAS  PubMed  Google Scholar 

  • Liu H-L, Huang X-F, Wang X, Kong L-Y (2007b) Biotransformation of p-coumaric acid (=(2E)-3-(4-Hydroxyphenyl)prop-2-enoic acid) by Momordica charantia peroxidase. Helv Chim Acta 90:1117–1132

    CAS  Google Scholar 

  • Markwalder HU, Neukom H (1976) Diferulic acid as a possible crosslink in hemicelluloses from wheat germ. Phytochemistry 15:836–837

    CAS  Google Scholar 

  • Micard V, Grabber JH, Ralph J, Renard CMGC, Thibault JF (1997) Dehydrodiferulic acids from sugar-beet pulp. Phytochemistry 44:1365–1368

    CAS  Google Scholar 

  • Monien BH, Henry BL, Raghuraman A, Hindle M, Desai UR (2006) Novel chemo-enzymatic oligomers of cinnamic acids as direct and indirect inhibitors of coagulation proteinases. Bioorg Med Chem 14:7988–7998

    CAS  PubMed  Google Scholar 

  • Münzenberger B, Hammer E, Wray V, Schauer F, Schmidt J, Strack D (2003) Detoxification of ferulic acid by ectomycorrhizal fungi. Mycorrhiza 13:117–121

    PubMed  Google Scholar 

  • Neudörffer A, Bonnefont-Rousselot D, Legrand A, Fleury M-B, Largeron M (2004) 4-Hydroxycinnamic ethyl ester derivatives and related dehydrodimers: relationship between oxidation potential and protective effects against oxidation of low-density lipoproteins. J Agric Food Chem 52:2084–2091

    PubMed  Google Scholar 

  • Neudörffer A, Desvergne J-P, Bonnefont-Rousselot D, Legrand A, Fleury M-B, Largeron M (2006) Protective effects of 4-hydroxycinnamic ethyl ester derivatives and related dehydrodimers against oxidation of LDL: radical scavengers or metal chelators? J Agric Food Chem 54:1898–1905

    PubMed  Google Scholar 

  • Ng A, Harvey AJ, Parker ML, Smith AC, Waldron KW (1998) Effect of oxidative coupling on the thermal stability of texture and cell wall chemistry of beet boot (Beta vulgaris). J Agric Food Chem 46:3365–3370

    CAS  Google Scholar 

  • Nordkvist E, Salomonsson AC, Aman P (1984) Distribution of insoluble bound phenolic acids in barley grain. J Sci Food Agric 35:657–661

    CAS  Google Scholar 

  • Obel N, Porchia AC, Scheller HV (2003) Intracellular feruloylation of arabinoxylan in wheat: evidence for feruloyl-glucose as precursor. Planta 216:620–629

    CAS  PubMed  Google Scholar 

  • Oosterveld A, Grabber JH, Beldman G, Ralph J, Voragen AGJ (1997) Formation of ferulic acid dehydrodimers through oxidative cross-linking of sugar beet pectin. Carbohydr Res 300:179–181

    CAS  Google Scholar 

  • Oosterveld A, Beldman G, Voragen AGJ (2000) Oxidative cross-linking of pectic polysaccharides from sugar beet pulp. Carbohydr Res 328:199–207

    CAS  PubMed  Google Scholar 

  • Oudgenoeg G, Hilhorst R, Piersma SR, Boeriu CG, Gruppen H, Hessing M, Voragen AGJ, Laane C (2001) Peroxidase-mediated cross-linking of a tyrosine-containing peptide with ferulic acid. J Agric Food Chem 49:2503–2510

    CAS  PubMed  Google Scholar 

  • Oudgenoeg G, Dirksen E, Ingemann S, Hilhorst R, Gruppen H, Boeriu CG, Piersma SR, van Berkel WJH, Laane C, Voragen AGJ (2002) Horseradish peroxidase-catalyzed oligomerization of ferulic acid on a template of a tyrosine-containing tripeptide. J Biol Chem 277:21332–21340

    CAS  PubMed  Google Scholar 

  • Parker ML, Ng A, Smith AC, Waldron KW (2000) Esterified phenolics of the cell walls of chufa (Cyperus esculentus L.) tubers and their role in texture. J Agric Food Chem 48:6284–6291

    CAS  PubMed  Google Scholar 

  • Parker CC, Parker ML, Smith AC, Waldron KW (2003) Thermal stability of texture in Chinese water chestnut may be dependent on 8, 8′-diferulic acid (aryltetralyn form). J Agric Food Chem 51:2034–2039

    CAS  PubMed  Google Scholar 

  • Parr AJ, Waldron KW, Ng A, Parker ML (1996) The wall-bound phenolics of Chinese water chestnut (Eleocharis dulcis). J Sci Food Agric 71:501–507

    CAS  Google Scholar 

  • Parr AJ, Ng A, Waldron KW (1997) Ester-linked phenolic components of carrot cell walls. J Agric Food Chem 45:2468–2471

    CAS  Google Scholar 

  • Piber M, Koehler P (2005) Identification of dehydro-ferulic acid-tyrosine in rye and wheat: evidence for a covalent cross-link between arabinoxylans and proteins. J Agric Food Chem 53:5276–5284

    CAS  PubMed  Google Scholar 

  • Quideau S, Ralph J (1997) Lignin-ferulate cross-links in grasses. Part 4. Incorporation of 5–5-coupled dehydrodiferulate into synthetic lignin. J Chem Soc Perkin Trans 1235:1–2358

    Google Scholar 

  • Ralet M-C, Andre-Reloux G, Quemener B, Thibault JF (2005) Sugar beet (Beta vulgaris) pectins are covalently cross-linked through diferulic bridges in the cell wall. Phytochemistry 66:2800–2814

    CAS  PubMed  Google Scholar 

  • Ralph J, Helm RF, Quideau S (1992a) Lignin-feruloyl ester cross-links in grasses. Part 2. Model compound syntheses. J Chem Soc Perkin Trans 1297:1–2980

    Google Scholar 

  • Ralph J, Helm RF, Quideau S, Hatfield RD (1992b) Lignin-feruloyl ester cross-links in grasses. Part 1. Incorporation of feruloyl esters into coniferyl alcohol dehydrogenation polymers. J Chem Soc Perkin Trans 1296:1–2969

    Google Scholar 

  • Ralph J, Quideau S, Grabber JH, Hatfield RD (1994a) Identification and synthesis of new ferulic acid dehydrodimers present in grass cell-walls. J Chem Soc Perkin Trans 1348:5–3498

    Google Scholar 

  • Ralph J, Hatfield RD, Quideau S, Helm RF, Grabber JH, Jung H-JG (1994b) Pathway of p-coumaric acid incorporation into maize lignin as revealed by NMR. J Am Chem Soc 116:9448–9456

    CAS  Google Scholar 

  • Ralph J, Grabber JH, Hatfield RD (1995) Lignin-ferulate cross-links in grasses: active incorporation of ferulate polysaccharide esters into ryegrass lignins. Carbohydr Res 275:167–178

    CAS  Google Scholar 

  • Ralph J, Garcia-Conesa MT, Williamson G (1998) Simple preparation of 8–5-coupled diferulate. J Agric Food Chem 46:2531–2532

    CAS  Google Scholar 

  • Ralph J, Bunzel M, Marita JM, Hatfield RD, Lu F, Kim H, Schatz PF, Grabber JH, Steinhart H (2004a) Peroxidase-dependent cross-linking reactions of p-hydroxycinnamates in plant cell walls. Phytochem Rev 3:79–96

    CAS  Google Scholar 

  • Ralph J, Lundquist K, Brunow G, Lu F, Kim H, Schatz PF, Marita JM, Hatfield RD, Ralph SA, Christensen JH, Boerjan W (2004b) Lignins: natural polymers from oxidative coupling of 4-hydroxyphenylpropanoids. Phytochem Rev 3:29–60

    CAS  Google Scholar 

  • Robertson JA, Faulds CB, Smith AC, Waldron KW (2008) Peroxidase-mediated oxidative cross-linking and its potential to modify mechanical properties in water-soluble polysaccharide extracts and cereal grain residues. J Agric Food Chem 56:1720–1726

    CAS  PubMed  Google Scholar 

  • Rodriguez R, Jaramillo S, Guillen R, Jimenez A, Fernandez-Bolanos J, Heredia A (2005) Cell wall phenolics of white and green asparagus. J Sci Food Agric 85:971–978

    CAS  Google Scholar 

  • Rodriguez-Arcos RC, Smith AC, Waldron KW (2004) Ferulic acid cross-links in asparagus cell walls in relation to texture. J Agric Food Chem 52:4740–4750

    CAS  PubMed  Google Scholar 

  • Rouau X, Cheynier V, Surget A, Gloux D, Barron C, Meudec E, Louis-Montero J, Criton M (2003) A dehydrotrimer of ferulic acid from maize bran. Phytochemistry 63:899–903

    CAS  PubMed  Google Scholar 

  • Russell WR, Scobbie L, Chesson A, Richardson AJ, Stewart CS, Duncan SH, Drew JE, Duthie GG (2008) Anti-inflammatory implications of the microbial transformation of dietary phenolic compounds. Nutr Cancer 60:636–642

    CAS  PubMed  Google Scholar 

  • Sanchez M, Pena MJ, Revilla G, Zarra I (1996) Changes in dehydrodiferulic acids and peroxidase activity against ferulic acid associated with cell walls during growth of Pinus pinaster hypocotyl. Plant Physiol 111:941–946

    CAS  PubMed  Google Scholar 

  • Santiago R, Butron A, Reid LM, Arnason JT, Sandoya G, Souto XC, Malvar RA (2006) Diferulate content of maize sheaths is associated with resistance to the mediterranean corn borer Sesamia nonagrioides (Lepidoptera: Noctuidae). J Agric Food Chem 54:9140–9144

    CAS  PubMed  Google Scholar 

  • Santiago R, Reid LM, Arnason JT, Zhu XY, Martinez N, Malvar RA (2007) Phenolics in maize genotypes differing in susceptibility to Gibberella stalk rot (Fusarium graminearum Schwabe). J Agric Food Chem 55:5186–5193

    CAS  PubMed  Google Scholar 

  • Santiago R, Sandoya G, Butron A, Barros J, Malvar RA (2008) Changes in phenolic concentrations during recurrent selection for resistance to the Mediterranean corn borer (Sesamia nonagrioides Lef.). J Agric Food Chem 56:8017–8022

    CAS  PubMed  Google Scholar 

  • Saulnier L, Crepeau MJ, Lahaye M, Thibault JF, Garcia-Conesa MT, Kroon PA, Williamson G (1999) Isolation and structural determination of two 5, 5′-diferuloyl oligosaccharides indicate that maize heteroxylans are covalently cross-linked by oxidatively coupled ferulates. Carbohydr Res 320:82–92

    CAS  Google Scholar 

  • Schatz PF, Ralph J, Lu F, Guzei IA, Bunzel M (2006) Synthesis and identification of 2,5-bis-(4-hydroxy-3-methoxyphenyl)-tetrahydrofuran-3,4-dicarboxylic acid, an unanticipated ferulate 8–8-coupling product acylating cereal plant cell walls. Org Biomol Chem 4:2801–2806

    CAS  PubMed  Google Scholar 

  • Takahama U, Oniki T, Shimokawa H (1996) A possible mechanism for the oxidation of sinapyl alcohol by peroxidase-dependent reactions in the apoplast: enhancement of the oxidation by hydroxycinnamic acids and components of the apoplast. Plant Cell Physiol 37:499–504

    CAS  Google Scholar 

  • Waldron KW, Parr AJ, Ng A, Ralph J (1996) Cell wall esterified phenolic dimers: identification and quantification by reverse phase high performance liquid chromatography and diode array detection. Phytochem Anal 7:305–312

    CAS  Google Scholar 

  • Waldron KW, Smith AC, Parr AJ, Ng A, Parker ML (1997) New approaches to understanding and controlling cell separation in relation to fruit and vegetable texture. Trends Food Sci Technol 8:213–221

    CAS  Google Scholar 

  • Waldron KW, Parker ML, Smith AC (2003) Plant cell walls and food quality. Comp Rev Food Sci Food Safety 2:128–146

    Google Scholar 

  • Wan X, Liu H-L, Huang X, Luo J, Kong L-Y (2008) Biotransformation of caffeic acid by Momordica charantia peroxidase. Can J Chem 86:821–830

    CAS  Google Scholar 

  • Ward G, Hadar Y, Bilkis I, Konstantinovsky L, Dosoretz CG (2001) Initial steps of ferulic acid polymerization by lignin peroxidase. J Biol Chem 276:18734–18741

    CAS  PubMed  Google Scholar 

  • Yang J-G, Uchiyama T (2000) Hydroxycinnamic acids and their dimers involved in the cessation of cell elongation in Mentha suspension culture. Biosci Biotechnol Biochem 64:1572–1579

    CAS  PubMed  Google Scholar 

  • Yu B-B, Han X-Z, Lou H-X (2007) Oligomers of resveratrol and ferulic acid prepared by peroxidase-catalyzed oxidation and their protective effects on cardiac injury. J Agric Food Chem 55:7753–7757

    CAS  PubMed  Google Scholar 

  • Zarra I, Sanchez M, Queijeiro E, Pena MJ, Revilla G (1999) The cell wall stiffening mechanism in Pinus pinaster Aiton: regulation by apoplastic levels of ascorbate and hydrogen peroxide. J Sci Food Agric 79:416–420

    CAS  Google Scholar 

Download references

Acknowledgments

The author is grateful to many coworkers and collaborators who worked on many of these aspects, including but not limited to: John Ralph, Carola Funk, Ella Allerdings, Diane Dobberstein, Diana Bunzel, Philipp Bruening, Birgit Heuermann, Hoon Kim, Fachuang Lu and Paul Schatz.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mirko Bunzel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bunzel, M. Chemistry and occurrence of hydroxycinnamate oligomers. Phytochem Rev 9, 47–64 (2010). https://doi.org/10.1007/s11101-009-9139-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11101-009-9139-3

Keywords

Navigation