Skip to main content
Log in

Transcriptome profiling of genes involved in photosynthesis in Elaeagnus angustifolia L. under salt stress

  • Original paper
  • Published:
Photosynthetica

Abstract

High salt concentration is a major abiotic stress limiting plant growth and productivity in many areas of the world. Elaeagnus angustifolia L. adapts to adverse environments and is widely planted in the western region of China as a windbreaker and for landscape and soil stabilization. High salt concentrations inhibited photosynthesis of E. angustifolia, but the mechanism is not known. In this paper, RNA-sequencing was used to investigate effects of salt stress on the photosynthetic characteristics of the species. In total, 584 genes were identified and involved in photosynthetic pathways. The downregulation of genes that encode key enzymes involved in photosynthesis and genes correlated to important structures in photosystem and light-harvesting complexes might be the main reason, particularly, the downregulation of the gene that encodes magnesium chelatase. This would decrease the activity of enzymes involved in chlorophyll synthesis and the downregulation of the key gene that encodes Rubisco, and thereby decreases enzyme activity and the protein content of Rubisco.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CDS:

predicted conding sequence

C i :

intercellular CO2 concentration

COG:

clusters of orthologous groups

DEG:

differentially expressed gene

DM:

dry mass

E :

transpiration rate

FDR:

false discovery rate

FM:

fresh mass

FPKM:

fragments per kilobase of exon model

Fv/Fm :

maximum photochemical efficiency of PSII

gs:

stomatal conductance

PEPC:

phosphoenolpyruvate carboxylase

P N :

net photosynthetic rate

PPDK:

pyruvate orthophosphate dikinase

RNA-Seq:

RNAsequencing

RPKM:

reads per KB per million

SNP:

simple nucleotide polymorphism

SSR:

simple sequence repeat

ΦPSII :

actual PSII efficiency

References

  • Ahmadiani A., Hosseiny J., Semnanian S. et al.: Antinociceptive and anti-inflammatory effects of Elaeagnus angustifolia fruit extract.–J. Ethnopharmacol. 72: 287–292, 2000.

    Article  PubMed  CAS  Google Scholar 

  • Alshammary S.F., Qian Y.L., Wallner S.J.: Growth response of four turfgrass species to salinity.–Agr. Water Manage. 66: 97–111, 2004.

    Article  Google Scholar 

  • Amezketa E.: An integrated methodology for assessing soil salinization, a pre-condition for land desertification.–J. Arid Environ. 67: 594–606, 2006.

    Article  Google Scholar 

  • Anderson L.E.: Chloroplast and cytoplasmic enzymes. 3. Pea leaf ribose-5-phosphate isomerases.–BBA-Enzymology 235: 245–249, 1971.

    CAS  Google Scholar 

  • Arnon D.I.: Copper enzymes in isolated chloroplasts, polyphenoloxidase in Beta vulgaris.–Plant Physiol. 24: 1–15, 1949.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ashburner B.M., Ball C.A., Blake J.A. et al.: Gene ontology: tool for the unification of biology.–Nat Genet. 25: 25–29, 2000.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bazakos C., Manioudaki M.E., Therios I. et al.: Comparative transcriptome analysis of two olive cultivars in response to NaCl-stress.–PLoS ONE 7: e42931, 2012.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brzezowski P., Sharifi M.N., Dent R.M. et al.: Mg chelatase in chlorophyll synthesis and retrograde signaling in Chlamydomonas reinhardtii: CHLI 2 cannot substitute for CHLI 1.–J. Exp. Bot. 67: 3925–3938, 2016.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen J.B., Zhang F.R., Huang D.R. et al.: Transcriptome analysis of transcription factors in two melon (Cucumis melo L.) cultivars under salt stress.–J. Plant Physiol. 50: 150–158, 2014.

    CAS  Google Scholar 

  • Conesa A., Götz S., García-Gómez J.M. et al.: Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research.–Bioinformatics 21: 3674–6, 2005.

    Article  PubMed  CAS  Google Scholar 

  • Curtis P.S., Läuchli A.: The role of leaf area development and photosynthetic capacity in determining growth of kenaf under moderate salt stress.–Funct. Plant Biol. 13: 553–565., 1986.

    Google Scholar 

  • Deinlein U., Stephan A.B., Horie T. et al.: Plant salt-tolerance mechanisms.–Trends Plant Sci. 19: 371–379, 2014.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Feki K., Quintero J., Khoudi H. et al.: A constitutively active form of a durum wheat Na+/H+ antiporter SOS1 confers high salt tolerance to transgenic Arabidopsis.–Plant Cell Rep. 33: 277–288, 2014.

    Article  PubMed  CAS  Google Scholar 

  • Flexas J., Ribas-Carbó M.., Bota J. et al.: Decreased Rubisco activity during water stress is not induced by decreased relative water content but related to conditions of low stomatal conductance and chloroplast CO2 concentration.–New Phytol. 172: 73–82, 2006.

    Article  PubMed  CAS  Google Scholar 

  • Flowers T.J., Colmer T.D.: Plant salt tolerance: adaptation in halophytes.–Ann. Bot.-London 115: 327–331, 2015.

    Article  CAS  Google Scholar 

  • Green B.R., Pichersky E., Kloppstech K.: Chlorophyll a/bbinding proteins: an extended family.–Trends Biochem. Sci. 16: 181–186, 1991.

    Article  PubMed  CAS  Google Scholar 

  • Heid C.A., Stevens J., Livak K.J. et al.: Real time quantitative PCR.–Genome Res. 6: 986–994, 1996.

    Article  PubMed  CAS  Google Scholar 

  • Kalaitzis P., Bazakos C., Manioudaki M.: Comparative transcriptome analysis of two olive cultivars in response to NaCl stress.–PLoS ONE 7: e42931, 2012.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kanehisa M., Goto S., Kawashima S. et al.: The KEGG resource for deciphering the genome.–Nucleic Acids Res. 32: D277–D280, 2004.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kerkeb L., Donaire J.P., Rodríguez-Rosales M.P.: Plasma membrane H+-ATPase activity is involved in adaptation of tomato calli to NaCl.–Physiol. Plantarum 111: 483–490, 2001.

    Article  CAS  Google Scholar 

  • Khavari-Nejad R.A., Mostofi Y.: Effects of NaCl on photosynthetic pigments, saccharides and chloroplast ultrastructure in leaves of tomato cultivars.–Photosynthetica 35: 151–154, 1998.

    Article  CAS  Google Scholar 

  • Khodarahmpour Z.: Effects of NaCl salinity on maize (Zea mays L.) at germination and early seedling stage.–Afr. J. Biotechnol. 11: 298–304, 2001.

    Google Scholar 

  • Knowles J.R., Albery W.J.: Perfection in enzyme catalysis: the energetics of triosephosphate isomerase.–Accounts Chem. Res. 10: 105–111, 1977.

    Article  CAS  Google Scholar 

  • Liu X.X., Qi M.Y., Gao Q.J. et al.: [Effects of Na2SO4 stress on net photosynthesis rate and other physiological indexes of Elaeagnus Mooraroftii.]–Xinjiang Agr. Sci. 42: 102–106, 2005. [In Chinese]

    Google Scholar 

  • Liu Z.X., Zhang H.X., Yang X.Y. et al.: Effects of Na2SO4 stress on growth and photosynthetic physiology of Elaeagnus angustifolia seedlings.–For. Res. 27: 186–194, 2014.

    Google Scholar 

  • Livak K.J., Schmittgen T.D.: Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method.–Methods 25: 402–408, 2001.

    Article  PubMed  CAS  Google Scholar 

  • Munns R., Tester M.: Mechanisms of salinity tolerance.–Annu. Rev. Plant Biol. 59: 651–681, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Pagano E., Maddonni G.A.: Intra-specific competition in maize: Early established hierarchies differ in plant growth and biomass partitioning to the ear around silking.–Field Crop. Res. 101: 306–320, 2007.

    Article  Google Scholar 

  • Song J., Ding X., Feng G. et al.: Nutritional and osmotic roles of nitrate in a euhalophyte and a xerophyte in saline conditions.–New Phytol. 171: 357–366, 2006.

    Article  PubMed  CAS  Google Scholar 

  • Sui N., Yang Z., Liu M.L., Wang B.: Identification and transcriptomic profiling of genes involved in increasing sugar content during salt stress in sweet sorghum leaves.–BMC Genomics 16: 2–18, 2015.

    Article  CAS  Google Scholar 

  • Sun W., Xu X., Zhu H. et al.: Comparative transcriptomic profiling of a salt-tolerant wild tomato species and a saltsensitive tomato cultivar.–Plant Cell Physiol. 51: 997–1006, 2010.

    Article  PubMed  CAS  Google Scholar 

  • van Kooten O., Snel J.F.: The use of chlorophyll fluorescence nomenclature in plant stress physiology.–Photosynth. Res. 25: 147–50, 1990.

    Article  PubMed  Google Scholar 

  • Whitney S.M., Houtz R.L., Alonso H.: Advancing our understanding and capacity to engineer nature’s CO2-sequestering enzyme, Rubisco.–Plant Physiol. 155: 27–35, 2011.

    Article  PubMed  CAS  Google Scholar 

  • Xiao H.D., Chen C.S., Xu Y. et al.: Cloning and expression analysis of the chloroplast fructose-1,6-bisphosphatase gene from Pyropia haitanensis.–Acta Oceanol. Sin. 33: 92–100, 2014.

    Article  CAS  Google Scholar 

  • Zhang H., Li Z., Yoo J.H. et al.: Rice Chlorina-1 and Chlorina-9 encode Chl D and Chl L subunits of Mg-chelatase, a key enzyme for chlorophyll synthesis and chloroplast development.–Plant Mol. Biol. 62: 325–337, 2006.

    Article  PubMed  CAS  Google Scholar 

  • Zhao K., Fan H., Zhou S., Song J.: Study on the salt and drought tolerance of Suaeda salsa and Kalanchoe claigremontiana under iso-osmotic salt and water stress.–Plant Sci. 165: 837–844, 2003.

    Article  CAS  Google Scholar 

  • Zhu J.K.: Plant salt tolerance.–Trends Plant Sci. 6: 66–71, 2001.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to B. S. Wang or M. Chen.

Additional information

Acknowledgements: This work was supported by the National Natural Science Foundation of China (Grant 31400239, 31600200), the National Basic Research Program of China (Grant 2012CB114201), the Science and Technology Development Projects of Shandong Province (Grant 2013GNC11310), Independent Innovation and Achievement Transformation of Special Major Key Technical Plans of Shandong Province (2017CXGC0311), and the Program for Scientific Research Innovation Team in Colleges and Universities of Shandong Province.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, J., Li, J.P., Yuan, F. et al. Transcriptome profiling of genes involved in photosynthesis in Elaeagnus angustifolia L. under salt stress. Photosynthetica 56, 998–1009 (2018). https://doi.org/10.1007/s11099-018-0824-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-018-0824-6

Additional key words

Navigation