Skip to main content
Log in

Effects of the interaction between vapor-pressure deficit and salinity on growth and photosynthesis of Cucumis sativus seedlings under different CO2 concentrations

  • Published:
Photosynthetica

Abstract

We studied growth and photosynthesis of cucumber (Cucumis sativus) seedlings under two vapor-pressure deficit levels (VPD; 0.4 and 3.0 kPa), two salinity levels (0 mM and 34 mM NaCl), and two CO2 concentrations ([CO2]; 400 and 1,000 μmol mol–1). Relative growth rate (RGR) decreased with increasing VPD, but the causal factor differed between salinity levels and CO2 concentrations. Under ambient [CO2], RGR decreased with increasing VPD at low salinity mainly due to decreased leaf area ratio (LAR), and decreased net assimilation rate (NAR) at high salinity. The decrease in intercellular [CO2] (Ci) with decreasing stomatal conductance caused by high VPD did not significantly limit net photosynthetic rate (PN) at low salinity, but PN was potentially limited by Ci at high salinity. At high [CO2], high VPD reduced LAR, but did not affect NAR. This is because the decrease in Ci occurred where slope of PNCi curve was almost flat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AC:

ambient [CO2]

ANOVA :

analysis of variance

[CO2]:

CO2 concentration

C i :

intercellular CO2 concentration

DM:

dry mass

EC:

elevated [CO2]

g s :

stomatal conductance

J 300 and J 1500 :

electron transport rates at photosynthetic photon flux densities of 300 and 1,500 μmol m–2 s–1, respectively

LAR:

leaf area ratio

LMR:

leaf mass ratio

NAR:

net assimilation rate

P N :

net photosynthetic rate

Ψl :

leaf water potential

RGR:

relative growth rate

SLA:

specific leaf area

V cmax :

maximum rate of Rubisco carboxylase activity

VPD:

vapor-pressure deficit

References

  • Ben-Asher J., Garcia A.G., Flitcroft I., Hoogenboom G.: Effect of atmospheric water vapor on photosynthesis, transpiration and canopy conductance: A case study in corn. — Plant Soil Environ. 59: 549–555, 2013.

    Article  Google Scholar 

  • Buckley T.N.: The control of stomata by water balance. — New Phytol. 168: 275–292, 2005.

    Article  PubMed  CAS  Google Scholar 

  • Bunce J.A.: Does transpiration control stomatal responses to water vapour pressure deficit? — Plant Cell Environ. 20: 131–135, 1997.

    Article  Google Scholar 

  • Bunce J.A.: Effects of water vapor pressure difference on leaf gas exchange in potato and sorghum at ambient and elevated carbon dioxide under field conditions. — Field Crop. Res. 82: 37–47, 2003.

    Article  Google Scholar 

  • Carins-Murphy M.R., Jordan G.J., Brodribb T.J.: Acclimation to humidity modifies the link between leaf size and the density of veins and stomata. — Plant Cell Environ. 37: 124–131, 2014.

    Article  PubMed  CAS  Google Scholar 

  • Chen T.W., Kahlen K., Stützel H.: Disentangling the contributions of osmotic and ionic effects of salinity on stomatal, mesophyll, biochemical and light limitations to photosynthesis. — Plant Cell Environ. 38: 1528–1542, 2015.

    Article  PubMed  CAS  Google Scholar 

  • Dai Z., Edwards G.E., Ku M.S. Control of photosynthesis and stomatal conductance in Ricinus communis L., (castor bean) by leaf to air vapor pressure deficit. — Plant Physiol. 99: 1426–1434, 1992.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Davies W.J., Zhang J.: Root signals and the regulation of growth and development of plants in drying soil. — Annu. Rev. Plant Biol. 42: 55–76, 1991.

    Article  CAS  Google Scholar 

  • Drew M.C., Hold P.S., Picchioni G.A.: Inhibition by NaCl of net CO2 fixation and yield of cucumber. — J. Am. Soc. Hortic. Sci. 115: 472–477, 1990.

    CAS  Google Scholar 

  • El-Sharkawy M.A.: Overview: Early history of crop growth and photosynthesis modeling. — BioSystems 103: 205–211, 2011.

    Article  PubMed  CAS  Google Scholar 

  • Flexas J., Medrano H.: Drought — inhibition of photosynthesis in C3 plants: stomatal and non-stomatal limitations revisited. — Ann. Bot.-London 89: 183–189, 2002.

    Article  CAS  Google Scholar 

  • Fricke W., Akhiyarova G., Veselov D., Kudoyarova G.: Rapid and tissue — specific changes in ABA and in growth rate in response to salinity in barley leaves. — J. Exp. Bot. 55: 1115–1123, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Farquhar G.D.: Feedforward responses of stomata to humidity. — Funct. Plant Biol. 5: 787–800, 1978.

    Google Scholar 

  • Gislerød H.R., Nelson P.V.: The interaction of relative air humidity and carbon dioxide enrichment in the growth of Chrysanthemum × morifolium Ramat. — Sci. Hortic.-Amsterdam 38: 305–313, 1989.

    Article  Google Scholar 

  • Grantz D.A.: Plant response to atmospheric humidity. — Plant Cell Environ. 13: 667–679, 1990.

    Article  Google Scholar 

  • Hunt R., Causton D.R., Shipley B., Askew A.P.: A modern tool for classical plant growth analysis. — Ann. Bot. 90: 485–488, 2002.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Keck R.W., Boyer J.S.: Chloroplast response to low leaf water potentials III. Differing inhibition of electron transport and photophosphorylation. — Plant Physiol. 53: 474–479, 1974.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Körner O., Challa H.: Process-based humidity control regime for greenhouse crops. — Comput. Electron. Agr. 39: 173–192, 2003.

    Article  Google Scholar 

  • Lange O.L., Lösch R., Schulze E.D., Kappen L.: Responses of stomata to changes in humidity. — Planta 100: 76–86, 1971.

    Article  PubMed  CAS  Google Scholar 

  • Lawlor D.W.: Limitation to photosynthesis in water-stressed leaves: stomata vs. metabolism and the role of ATP. — Ann. Bot.-London 89: 871–885, 2002.

    Article  CAS  Google Scholar 

  • Liu F., Shahnazari A., Andersen M.N. et al.: Physiological responses of potato (Solanum tuberosum L.) to partial rootzone drying: ABA signalling, leaf gas exchange, and water use efficiency. — J. Exp. Bot. 57: 3727–3735, 2006.

    Article  PubMed  CAS  Google Scholar 

  • Lu N., Nukaya T., Kamimura T. et al.: Control of vapor pressure deficit (VPD) in greenhouse enhanced tomato growth and productivity during the winter season. — Sci. Hortic.- Amsterdam 197: 17–23, 2015.

    Article  Google Scholar 

  • McIntyre G.I., Boyer J.S.: The effect of humidity, root excision, and potassium supply on hypocotyl elongation in dark-grown seedlings of Helianthus annuus. — Can. J., Bot. 62: 420–428, 1984.

    Article  Google Scholar 

  • Mishra R.S., Abdin M.Z., Uprety D.C.: Interactive effects of elevated CO2 and moisture stress on the photosynthesis, water relation and growth of Brassica species. — J. Agron. Crop. Sci. 182: 223–230, 1999.

    Article  CAS  Google Scholar 

  • Munns R., Passioura J.B., Guo J. et al.: Water relations and leaf expansion: importance of time scale. — J. Exp. Bot. 51: 1495–1504, 2000.

    Article  PubMed  CAS  Google Scholar 

  • Munns R., Tester M.: Mechanisms of salinity tolerance. — Annu. Rev. Plant Biol. 59: 651–681, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Newton P.C.D., Clark H., Bell C.C., Glasgow E.M.: Interaction of soil moisture and elevated CO2 on the above-ground growth rate, root length density and gas exchange of turves from temperate pasture. — J. Exp. Bot. 47: 771–779, 1996.

    Article  CAS  Google Scholar 

  • Ottosen C.O., Mortensen L.M., Gislerød H.R.: Effect of relative air humidity on gas exchange, stomatal conductance and nutrient uptake in miniature potted roses. — Gartenbauwissenschaft 67: 143–147, 2002.

    CAS  Google Scholar 

  • Pantin F., Simonneau T., Muller B.: Coming of leaf age: control of growth by hydraulics and metabolics during leaf ontogeny. — New Phytol. 196: 349–366, 2012.

    Article  PubMed  Google Scholar 

  • Passioura J.B.: Root signals control leaf expansion in wheat seedlings growing in drying soil. — Funct. Plant Biol. 15: 687–693, 1988.

    Google Scholar 

  • Peak D., Mott K.A.: A new, vapour-phase mechanism for stomatal responses to humidity and temperature. — Plant Cell Environ. 34: 162–178, 2011.

    Article  PubMed  Google Scholar 

  • Pérez-López U., Miranda-Apodaca J., Mena-Petite A., Muñoz-Rueda A.: Barley growth and its underlying components are affected by elevated CO2 and salt concentration. — J. Plant Growth Regul. 32: 732–744, 2013.

    Article  CAS  Google Scholar 

  • Poorter H., Niinemets U., Poorter L. et al.: Causes and consequences of variation in leaf mass per area (LMA): a metaanalysis. — New Phytol. 182: 565–588, 2009.

    Article  PubMed  Google Scholar 

  • Poorter H., Pérez-Soba M.: The growth response of plants to elevated CO2 under non-optimal environmental conditions. — Oecologia 129: 1–20, 2001.

    Article  PubMed  Google Scholar 

  • Poorter H., Remkes C.: Leaf area ratio and net assimilation rate of 24 wild species differing in relative growth rate. — Oecologia 83: 553–559, 1990.

    Article  PubMed  Google Scholar 

  • Radford P.J.: Growth analysis formulae — their use and abuse. — Crop Sci. 7: 171–175, 1967.

    Article  Google Scholar 

  • Raschke K., Resemann A.: The midday depression of CO2 assimilation in leaves of Arbutus unedo L.: diurnal changes in photosynthetic capacity related to changes in temperature and humidity. — Planta 168: 546–558, 1986.

    Article  PubMed  CAS  Google Scholar 

  • Richards L.A.: Diagnosis and improvement of saline and alkali soils. — Soil Sci. 120: 800–826, 1954.

    Google Scholar 

  • Salah H.B.H., Tardieu F.: Control of leaf expansion rate of droughted maize plants under fluctuating evaporative demand. A superposition of hydraulic and chemical messages? — Plant Physiol. 114: 893–900, 1997.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Saliendra, N.Z., Sperry, J.S., Comstock, J.P.: Influence of leaf water status on stomatal response to humidity, hydraulic conductance, and soil drought in Betula occidentalis. — Planta 196: 357–366, 1995.

    Article  CAS  Google Scholar 

  • Sharkey T.D., Bernacchi C.J., Farquhar G.D., Singsaas E.L.: Fitting photosynthetic carbon dioxide response curves for C3 leaves. — Plant Cell Environ. 30: 1035–1040, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Shibuya T., Hayashi S., Endo R., Kitaya Y.: Growth analysis and photosynthesis measurements of cucumber seedlings grown under light with different red to far-red ratios. — HortScience 51: 843–846, 2016a.

    CAS  Google Scholar 

  • Shibuya T., Kano K., Endo R., Kitaya Y.: Photosynthetic properties and response to drought in cucumber seedlings acclimatized to different vapor-pressure-deficit levels. — Hortic J.: doi: 10.2503/hortj.MI-154, 2016b.

    Google Scholar 

  • Tardieu F., Parent B., Simonneau T.: Control of leaf growth by abscisic acid: hydraulic or non-hydraulic processes? — Plant Cell Environ. 33: 636–647, 2010.

    Article  PubMed  Google Scholar 

  • Tardieu F., Reymond M., Hamard P. et al.: Spatial distributions of expansion rate, cell division rate and cell size in maize leaves: a synthesis of the effects of soil water status, evaporative demand and temperature. — J. Exp. Bot. 51: 1505–1514, 2000.

    Article  PubMed  CAS  Google Scholar 

  • van de Sanden P.A., Veen B.W.: Effects of air humidity and nutrient solution concentration on growth, water potential and stomatal conductance of cucumber seedlings. — Sci. Hortic.- Amsterdam 50: 173–186, 1992.

    Article  Google Scholar 

  • von Caemmerer S., Farquhar G.D.: Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. — Planta 153: 376–387, 1981.

    Article  Google Scholar 

  • Waldron L.J., Terry N.: The influence of atmospheric humidity on leaf expansion in Beta vulgaris L. — Planta 170: 336–342, 1987.

    Article  PubMed  CAS  Google Scholar 

  • Westgate M.E., Boyer J.S.: Transpiration-and growth-induced water potentials in maize. — Plant Physiol. 74: 882–889, 1984.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wong S.C.: Interaction between elevated atmospheric concentration of CO2 and humidity on plant growth: comparison between cotton and radish. — Vegetatio 104: 211–221, 1993.

    Article  Google Scholar 

  • Xue Q., Weiss A., Arkebauer T.J., Baenziger P.S.: Influence of soil water status and atmospheric vapor pressure deficit on leaf gas exchange in field-grown winter wheat. — Environ. Exp. Bot. 51: 167–179, 2004.

    Article  Google Scholar 

  • Zhang D., Zhang Z., Li J. et al.: Regulation of vapor pressure deficit by greenhouse micro-fog systems improved growth and productivity of tomato via enhancing photosynthesis during summer season. — PLoS ONE 10: e0133919, 2015.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang J., Jia W., Yang J., Ismail A.M.: Role of ABA in integrating plant responses to drought and salt stresses. — Field Crop. Res. 97: 111–119, 2006.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Shibuya.

Additional information

Acknowledgements: This research was supported by a Japan Society for the Promotion of Science Grant-in-Aid for Scientific Research (B) (KAKENHI 15H04575). The authors thank Ryo Matsuda (University of Tokyo) and Masahito Ueyama (Osaka Prefecture University) for valuable discussion of the experimental results, and Norio Hirai (Osaka Prefecture University) for his valuable help in our statistical analysis. The authors also thank referees and editors for their careful reading and valuable suggestions to improve this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shibuya, T., Kano, K., Endo, R. et al. Effects of the interaction between vapor-pressure deficit and salinity on growth and photosynthesis of Cucumis sativus seedlings under different CO2 concentrations. Photosynthetica 56, 893–900 (2018). https://doi.org/10.1007/s11099-017-0746-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-017-0746-8

Additional key words

Navigation