Skip to main content
Log in

On central cognition

  • Published:
Philosophical Studies Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Notes

  1. Fodor (2000) is led to this conclusion because he thinks that cognitive science must traffic in processes that are local in character, whereas isotropic processes are, in an important way, holistic.

  2. Compare Peacocke’s (1986, 1992) claim that concept possession requires an appreciation of certain inferential moves as being primitively compelling. This makes grasp of inferential norms into a condition of genuine concept possession.

  3. The notion of consciousness in play here is some or other form of access-consciousness (Block 1995). But it matters little for our purposes whether the access in question is characterized in terms of first-order accessibility to processes of belief-formation and decision-making, or instead in terms of higher-order accessibility for immediate self-attribution. This is because in the case of humans, at least, mental states that are “globally broadcast” and hence first-order accessible will at the same time be higher-order accessible, and vice versa.

  4. Notice that I do not say that valence is bound into the contents of perception. This is because the evidence suggests that it is not. On the contrary, valence that is a product of many different sources (one’s background mood, irrelevant features of the stimulus or its surroundings, and so on) is by default taken to be directed at whatever is the current object of attention (Schwarz and Clore 1983, 2003; Forgas 1995; Higgins 1997; Gasper and Clore 2000; Winkielman et al. 2005; Li et al. 2007; Schnall et al. 2008). But the result is a motivational state that functions somewhat like an active desire as philosophers traditionally conceive of it, except that the relationship between one’s experienced affect and one’s stable values is highly labile and context dependent.

  5. The qualifications are needed because of the well-known constructive nature of memory. This means that any memory image will consist at least partly in elements that have been added later, or that have been added during the process of activating and recovering the memory itself. See Schacter (2001).

  6. Colom et al. (2010) reason that if general intelligence is a direct function of the efficiency of sensory-based working memory, then training in the latter should improve the former. However, they failed to find such effects. But this may be because they did not separately analyze those who benefited from the working-memory training and those who did not. For Jaeggi et al. (2011) find robust improvements in fluid general intelligence over a 3 month interval among children who show the greatest benefit from training in working memory tasks.

References

  • Anderson, J. (1993). Rules of the mind. Hillsdale: Erlbaum.

    Google Scholar 

  • Awh, E., Vogel, E., & Oh, S. (2006). Interactions between attention and working memory. Neuroscience, 139, 201–208.

    Google Scholar 

  • Baars, B. (1988). A cognitive theory of consciousness. New York: Cambridge University Press.

    Google Scholar 

  • Baars, B. (1997). In the theatre of consciousness. New York: Oxford University Press.

    Google Scholar 

  • Baars, B. (2002). The conscious access hypothesis: Origins and recent evidence. Trends in Cognitive Sciences, 6, 47–52.

    Google Scholar 

  • Baars, B. (2003). How brain reveals mind: Neuroimaging supports the central role of conscious experience. Journal of Consciousness Studies, 10, 100–114.

    Google Scholar 

  • Baars, B., Ramsoy, T., & Laureys, S. (2003). Brain, consciousness, and the observing self. Trends in Neurosciences, 26, 671–675.

    Google Scholar 

  • Baddeley, A. (1986). Working memory. Oxford: Oxford University Press.

    Google Scholar 

  • Baddeley, A. (2006). Working memory, thought, and action. Oxford: Oxford University Press.

    Google Scholar 

  • Baddeley, A., & Hitch, G. (1974). Working memory. In G. Bower (Ed.), Recent advances in learning and motivation, vol. 8 (Vol. 8). New York: Academic Press.

    Google Scholar 

  • Barsalou, L. (1999). Perceptual symbol systems. Behavioral and Brain Sciences, 22, 577–660.

    Google Scholar 

  • Block, N. (1995). A confusion about the function of consciousness. Behavioral and Brain Sciences, 18, 227–247.

    Google Scholar 

  • Block, N. (2002). The harder problem of consciousness. The Journal of Philosophy, 99, 1–35.

    Google Scholar 

  • Brandom, R. (1994). Making it explicit. Cambridge: Harvard University Press.

    Google Scholar 

  • Brandom, R. (2000). Articulating reasons. Cambridge: Harvard University Press.

    Google Scholar 

  • Bratman, M. (1987). Intentions, plans, and practical reason. Cambridge: Harvard University Press.

    Google Scholar 

  • Bratman, M. (1999). Faces of intention. Cambridge: Cambridge University Press.

    Google Scholar 

  • Brewer, B. (1999). Perception and reason. Oxford: Oxford University Press.

    Google Scholar 

  • Buckner, R. (2010). The role of the hippocampus in prediction and imagination. Annual Review of Psychology, 61, 27–48.

    Google Scholar 

  • Bullmore, E., & Sporns, O. (2009). Complex brain networks: Graph theoretical analysis of structural and functional systems. Nature Reviews Neuroscience, 10, 186–198.

    Google Scholar 

  • Camp, E. (2004). The generality constraint, nonsense, and categorical restrictions. Philosophical Quarterly, 54, 209–231.

    Google Scholar 

  • Campana, G., Cowey, A., & Walsh, V. (2002). Priming of motion direction and area V5/MT: A test of perceptual memory. Cerebral Cortex, 12, 663–669.

    Google Scholar 

  • Carruthers, P. (2006). The architecture of the mind. Oxford: Oxford University Press.

    Google Scholar 

  • Carruthers, P. (2009). Invertebrate concepts confront the generality constraint (and win). In R. Lurz (Ed.), The philosophy of animal minds. Cambridge: Cambridge University Press.

    Google Scholar 

  • Carruthers, P. (2011). The opacity of mind. Oxford: Oxford University Press.

    Google Scholar 

  • Carruthers, P. (2013). Evolution of working memory. Proceedings of the National Academy of Sciences, 110, 10371–10378.

  • Chalmers, D. (1997). Availability: The cognitive basis of experience. Behavioral and Brain Sciences, 20, 148–149.

    Google Scholar 

  • Colom, R., Quiroga, M., Shih, P., Martínez, K., Burgaleta, M., Martínez-Molina, A., et al. (2010). Improvement in working memory is not related to increased intelligence scores. Intelligence, 38, 497–505.

    Google Scholar 

  • Colom, R., Rebollo, I., Palacios, A., Juan-Espinosa, M., & Kyllonen, P. (2004). Working memory is (almost) perfectly predicted by g. Intelligence, 32, 277–296.

    Google Scholar 

  • Coolidge, F., & Wynn, T. (2009). The rise of Homo sapiens: The evolution of modern thinking. Maiden: Wiley-Blackwell.

    Google Scholar 

  • Corbetta, M., & Shulman, G. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews Neuroscience, 3, 201–215.

    Google Scholar 

  • D’Esposito, M. (2007). From cognitive to neural models of working memory. Philosophical Transactions of the Royal Society B, 362, 761–772.

    Google Scholar 

  • Dade, L., Zatorre, R., Evans, A., & Jones-Gottman, M. (2001). Working memory in another dimension: Functional imaging of human olfactory working memory. Neuroimage, 14, 650–660.

    Google Scholar 

  • Dehaene, S., Changeux, J.-P., Naccache, L., Sackur, J., & Sergent, C. (2006). Conscious, preconscious, and subliminal processing: A testable taxonomy. Trends in Cognitive Sciences, 10, 204–211.

    Google Scholar 

  • Dehaene, S., & Naccache, L. (2001). Towards a cognitive neuroscience of consciousness: Basic evidence and a workspace framework. Cognition, 79, 1–37.

    Google Scholar 

  • Dehaene, S., Naccache, L., Cohen, L., Bihan, D., Mangin, J., Poline, J., et al. (2001). Cerebral mechanisms of word priming and unconscious repetition masking. Nature Neuroscience, 4, 752–758.

    Google Scholar 

  • Dehaene, S., Sergent, C., & Changeux, J. (2003). A neuronal network model linking subjective reports and objective physiological data during conscious perception. Proceedings of the National Academy of Sciences, 100, 8520–8525.

    Google Scholar 

  • Dunlosky, J., & Metcalfe, J. (2009). Metacognition. Thousand Oaks: Sage Publications.

    Google Scholar 

  • Egner, T., Monti, J., Trittschuh, E., Wieneke, C., Hirsch, J., & Mesulam, M. (2008). Neural integration of top-down spatial and feature-based information in visual search. Journal of Neuroscience, 28, 6141–6151.

    Google Scholar 

  • Evans, G. (1982). The varieties of reference. Oxford: Oxford University Press.

    Google Scholar 

  • Fodor, J. (1983). The modularity of mind. Cambridge: MIT Press.

    Google Scholar 

  • Fodor, J. (1998). Concepts. Oxford: Oxford University Press.

    Google Scholar 

  • Fodor, J. (2000). The mind doesn’t work that way. Cambridge: MIT Press.

    Google Scholar 

  • Forgas, J. (1995). Mood and judgment. Psychological Bulletin, 117, 39–66.

    Google Scholar 

  • Frankish, K. (2004). Mind and supermind. Cambridge: Cambridge University Press.

    Google Scholar 

  • Frankish, K. (2009). Systems and levels. In J. Evans & K. Frankish (Eds.), In two minds. Oxford: Oxford University Press.

    Google Scholar 

  • Gaillard, R., Dehaene, S., Adam, C., Clémenceau, S., Hasboun, D., Baulac, M., et al. (2009). Converging intracranial markers of conscious access. PLoS Biology, 7, 472–492.

    Google Scholar 

  • Gasper, K., & Clore, G. (2000). Do you have to pay attention to your feelings to be influenced by them? Personality and Social Psychology Bulletin, 26, 698–711.

    Google Scholar 

  • Gathercole, S. (1994). Neuropsychology and working memory: A review. Neuropsychology, 8, 494–505.

    Google Scholar 

  • Gazzaley, A., Cooney, J., McEvoy, K., Knight, R., & D’Esposito, M. (2005). Top-down enhancement and suppression of the magnitude and speed of neural activity. Journal of Cognitive Neuroscience, 17, 507–517.

    Google Scholar 

  • Gilbert, D., & Wilson, T. (2007). Prospection: Experiencing the future. Science, 317, 1351–1354.

    Google Scholar 

  • Gong, G., He, Y., Concha, L., Lebel, C., Gross, D., Evans, A., et al. (2009). Mapping anatomical connectivity patterns of human cerebral cortex using in vivo diffusion tensor imaging tractography. Cerebral Cortex, 19, 524–536.

    Google Scholar 

  • Hagmann, P., Cammoun, L., Gigandet, X., Meuli, R., Honey, C., Wedeen, C., et al. (2008). Mapping the structural core of human cerebral cortex. PLoS Biology, 6(7), e159.

    Google Scholar 

  • Harris, J., Miniussi, C., Harris, I., & Diamond, M. (2002). Transient storage of a tactile memory trace in primary somatosensory cortex. Journal of Neuroscience, 22, 8720–8725.

    Google Scholar 

  • Hickok, G., & Poeppel, D. (2007). The cortical organization of speech processing. Nature Reviews Neuroscience, 8, 393–402.

    Google Scholar 

  • Higgins, E. (1997). Beyond pleasure and pain. American Psychologist, 52, 1280–1300.

    Google Scholar 

  • Hurley, S. (2006). Making sense of animals. In S. Hurley & M. Nudds (Eds.), Rational animals? Oxford: Oxford University Press.

    Google Scholar 

  • Iturria-Medina, Y., Sotero, R., Canales-Rodriguez, E., Aleman-Gomez, Y., & Melie-Garcia, L. (2008). Studying the human brain anatomical network via diffusion-weighted MRI and graph theory. NeuroImage, 40, 1064–1076.

    Google Scholar 

  • Jaeggi, S., Buschkuehl, M., Jonides, J., & Shah, P. (2011). Short- and long-term benefits of cognitive training. Proceedings of the National Academy of Sciences, 108, 10081–10086.

    Google Scholar 

  • Jeannerod, M. (2006). Motor cognition. Oxford: Oxford University Press.

    Google Scholar 

  • Jonides, J., Lewis, R., Nee, D., Lustig, C., Berman, M., & Moore, K. (2008). The mind and brain of short-term memory. Annual Review of Psychology, 59, 193–224.

    Google Scholar 

  • Knudsen, E. (2007). Fundamental components of attention. Annual Review of Neuroscience, 30, 57–78.

    Google Scholar 

  • Koenigs, M., Barbey, A., Postle, B., & Grafman, J. (2009). Superior parietal cortex is critical for the manipulation of information in working memory. Journal of Neuroscience, 29, 14980–14986.

    Google Scholar 

  • Kosslyn, S. (1994). Image and brain. Cambridge: MIT Press.

    Google Scholar 

  • Kosslyn, S., Thompson, W., & Ganis, G. (2006). The case for mental imagery. New York: Oxford University Press.

    Google Scholar 

  • Kouider, S., Dehaene, S., Jobert, A., & Le Bihan, D. (2007). Cerebral bases of subliminal and supraliminal priming during reading. Cerebral Cortex, 17, 2019–2029.

    Google Scholar 

  • Kreiman, G., Fried, I., & Koch, C. (2003). Single neuron correlates of subjective vision in the human medial temporal lobe. Proceedings of the National Academy of Sciences, 99, 8378–8383.

    Google Scholar 

  • Kunda, Z. (1999). Social cognition. Cambridge: MIT Press.

    Google Scholar 

  • Kuo, B.-C., Stokes, M., & Nobre, A. (2012). Attention modulates maintenance of representations in visual short-term memory. Journal of Cognitive Neuroscience, 24, 51–60.

    Google Scholar 

  • Lepsien, J., Thornton, I., & Nobre, A. (2011). Modulation of working-memory maintenance by directed attention. Neuropsychologia, 49, 1569–1577.

    Google Scholar 

  • Levine, D., Warach, J., & Farah, M. (1985). Two visual systems in mental imagery: dissociation of “what” and “where” in imagery disorders due to bilateral posterior cerebral lesions. Neurology, 35, 1010–1018.

    Google Scholar 

  • Li, W., Moallem, I., Paller, K., & Gottfried, J. (2007). Subliminal smells can guide social preferences. Psychological Science, 18, 1044–1049.

    Google Scholar 

  • Lovett, M., Reder, L., & Lebiere, C. (1999). Modeling working memory in a unified architecture: An ACT-R perspective. In A. Miyake & P. Shah (Eds.), Models of working memory. New York: Cambridge University Press.

    Google Scholar 

  • Mahon, B., & Caramazza, A. (2008). A critical look at the embodied cognition hypothesis and a new proposal for grounding conceptual content. Journal of Physiology Paris, 102, 59–70.

    Google Scholar 

  • McDowell, J. (1994). Mind and world. Cambridge: Harvard University Press.

    Google Scholar 

  • Mikels, J., Reuter-Lorenz, P., Beyer, J., & Fredrickson, B. (2008). Emotion and working memory: Evidence for domain-specific processes for affective maintenance. Emotion, 8, 256–266.

    Google Scholar 

  • Mitchell, K., & Johnson, M. (2000). Source monitoring: Attributing mental experiences. In E. Tulving & F. Craik (Eds.), The Oxford handbook of memory. Oxford: Oxford University Press.

    Google Scholar 

  • Müller, N., & Knight, R. (2006). The functional neuroanatomy of working memory: Contributions of human brain lesion studies. Neuroscience, 139, 51–58.

    Google Scholar 

  • Newell, A. (1990). Unified theories of cognition. Cambridge: Harvard University Press.

    Google Scholar 

  • Oliveri, M., Turriziani, P., Carlesimo, G., Koch, G., Tomaiuolo, F., Panella, M., et al. (2001). Parietal-frontal interactions in visual-object and visual-spatial working memory: Evidence from transcranial magnetic stimulation. Cerebral Cortex, 11, 606–618.

    Google Scholar 

  • Pasternak, T. & Greenlee, M. (2005). Working memory in primate sensory systems. Nature Reviews Neuroscience, 6, 97–107.

    Google Scholar 

  • Paulescu, E., Frith, C., & Frackowiak, R. (1993). The neural correlates of the verbal component of working memory. Nature, 362, 342–345.

    Google Scholar 

  • Peacocke, C. (1986). Thoughts. Oxford: Blackwell Press.

    Google Scholar 

  • Peacocke, C. (1992). A study of concepts. Cambridge: MIT Press.

    Google Scholar 

  • Postle, B. (2006). Working memory as an emergent property of the mind and brain. Neuroscience, 139, 23–38.

    Google Scholar 

  • Postle, B., Ferrarelli, F., Hamidi, M., Feredoes, E., Massimini, M., Peterson, M., et al. (2006). Repetitive transcranial magnetic stimulation dissociates working memory manipulation from retention functions in the prefrontal, but not posterior parietal, cortex. Journal of Cognitive Neuroscience, 18, 1712–1722.

    Google Scholar 

  • Prinz, J. (2012). The conscious brain: How attention engenders experience. Oxford: Oxford University Press.

    Google Scholar 

  • Santos, L., Barnes, J., & Mahajan, N. (2005). Expectations about numerical events in four lemur species. Animal Cognition, 8, 253–262.

    Google Scholar 

  • Schacter, D. (2001). The seven sins of memory. New York: Houghton Mifflin.

    Google Scholar 

  • Schacter, D., Addis, D., & Buckner, R. (2007). Remembering the past to imagine the future: The prospective brain. Nature Reviews Neuroscience, 8, 657–661.

    Google Scholar 

  • Schacter, D., Addis, D., & Buckner, R. (2008). Episodic simulation of future events: Concepts, data, and applications. Annals of the New York Academy of Sciences, 1124, 39–60.

    Google Scholar 

  • Schnall, S., Haidt, J., Clore, G., & Jordon, A. (2008). Disgust as embodied moral judgment. Personality and Social Psychology Bulletin, 34, 1096–1109.

    Google Scholar 

  • Schwarz, N., & Clore, G. (1983). Mood, misattribution, and judgments of well-being: Informative affective states. Journal of Personality and Social Psychology, 45, 513–523.

    Google Scholar 

  • Schwarz, N., & Clore, G. (2003). Mood as information: 20 years later. Psychological Inquiry, 14, 296–303.

    Google Scholar 

  • Sergent, C., Baillet, S., & Dehaene, S. (2005). Timing of the brain events underlying access to consciousness during the attentional blink. Nature Neuroscience, 8, 1391–1400.

    Google Scholar 

  • Shanahan, M. (2010). Embodiment and the inner life. New York: Oxford University Press.

    Google Scholar 

  • Shergill, S., Brammer, M., Fukuda, R., Bullmore, E., Amaro, E., Murray, R., et al. (2002). Modulation of activity in temporal cortex during generation of inner speech. Human Brain Mapping, 16, 219–227.

    Google Scholar 

  • Sperber, D., & Wilson, D. (1995). Relevance: Communication and cognition (2nd ed.). Oxford: Blackwell.

    Google Scholar 

  • Sreenivasan, K., Sambhara, D., & Jha, A. (2011). Working memory templates are maintained as feature-specific perceptual codes. Journal of Neurophysiology, 106, 115–121.

    Google Scholar 

  • Stanton, G., Bruce, C., & Goldberg, M. (1995). Topography of projections to posterior cortical areas from the macaque frontal eye fields. Journal of Comparative Neurology, 353, 291–305.

    Google Scholar 

  • Todd, J., & Marois, R. (2004). Capacity limit of visual short-term memory in human posterior parietal cortex. Nature, 428, 751–754.

    Google Scholar 

  • Tye, M. (1995). Ten problems of consciousness. Cambridge: MIT Press.

    Google Scholar 

  • Uddin, L., Supekar, K., Amin, H., Rykhlevskaia, E., Nguyen, D., Greicius, M., et al. (2010). Dissociable connectivity within human angular gyrus and intraparietal sulcus: Evidence from functional and structural connectivity. Cerebral Cortex, 20, 2636–2646.

    Google Scholar 

  • Vuontela, V., Rama, P., Raninen, A., Aronen, H., & Carlson, S. (1999). Selective interference reveals dissociation between memory for location and color. NeuroReport, 10, 2235–2240.

    Google Scholar 

  • Winkielman, P., Berridge, K., & Wilbarger, J. (2005). Unconscious affective reactions to masked happy versus angry faces influence consumption behavior and judgments of value. Personality and Social Psychology Bulletin, 31, 121–135.

    Google Scholar 

  • Young, R., & Lewis, R. (1999). The Soar cognitive architecture and human working memory. In A. Miyake & P. Shah (Eds.), Models of working memory. New York: Cambridge University Press.

    Google Scholar 

  • Zwaan, R., Stanfield, R., & Yaxley, R. (2002). Do language comprehenders routinely represent the shapes of objects? Psychological Science, 13, 168–171.

    Google Scholar 

Download references

Acknowledgments

Some of the material used in this article is drawn from Carruthers (2011). I am grateful to Lizzie Schechter and Wayne Wu for their comments on an earlier draft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Carruthers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carruthers, P. On central cognition. Philos Stud 170, 143–162 (2014). https://doi.org/10.1007/s11098-013-0171-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11098-013-0171-1

Keywords

Navigation