Skip to main content
Log in

In vitro Dissolution Testing of Rifampicin Powder Formulations For Prediction of Plasma Concentration–Time Profiles After Inhaled Delivery

  • Original Research Article
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

The purpose of this study was to evaluate the in vitro lung dissolution of amorphous and crystalline powder formulations of rifampicin in polyethylene oxide (PEO) and 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC), and to predict the in vivo plasma concentration–time profiles using the in vitro data.

Methods

The in vitro dissolution and permeation profiles of respirable rifampicin particles were studied using a custom-made dissolution apparatus. Data from the in vitro dissolution test were used to estimate the parameters to be used as the input for the simulation of in vivo plasma concentration–time profiles using STELLA® software. For prediction of in vivo profiles, a one-compartment model either with a first order elimination or with a Michaelis–Menten kinetics-based elimination was used.

Results

Compared to the crystalline formulation, the amorphous formulation showed rapid in vitro dissolution suggesting their possible faster in vivo absorption and higher plasma concentrations of rifampicin following lung delivery. However, the simulations suggested that both powder formulations would result in similar plasma-concentration time profiles of rifampicin.

Conclusions

Use of an in vitro dissolution test coupled with a simulation model for prediction of plasma-concentration time profiles of an inhaled drug was demonstrated in this work. These models can also be used in the design of inhaled formulations by controlling their release and dissolution properties to achieve desired lung retention or systemic absorption following delivery to the lungs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1:
Scheme 2:
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

All data generated or analysed during this study are included in this published article and its supplementary information files.

References

  1. Forbes B, Richer NH, Buttini F. Dissolution: a critical performance characteristic of inhaled products. In: Pulmonary Drug Delivery: Advances and Challenges. Wiley & Sons; 2015. p. 223–40.

  2. Riley T, Christopher D, Arp J, Casazza A, Colombani A, Cooper A, et al. Challenges with Developing In Vitro Dissolution Tests for Orally Inhaled Products (OIPs). AAPS PharmSciTech [Internet]. 2012;13(3):978–89. Available from: https://doi.org/10.1208/s12249-012-9822-3.

  3. Velaga SP, Djuris J, Cvijic S, Rozou S, Russo P, Colombo G, et al. Dry powder inhalers: An overview of the in vitro dissolution methodologies and their correlation with the biopharmaceutical aspects of the drug products. Eur J Pharm Sci [Internet]. 2018;113:18–28. Available from: https://www.sciencedirect.com/science/article/pii/S0928098717304980.

  4. Floroiu A, Klein M, Krämer J, Lehr C-M. Towards standardized dissolution techniques for in vitro performance testing of dry powder inhalers. Dissolut Technol. 2018;25:6–18.

    Article  CAS  Google Scholar 

  5. Gerde P, Malmlöf M, Havsborn L, Sjöberg C-O, Ewing P, Eirefelt S, et al. Dissolv It: an in vitro method for simulating the dissolution and absorption of inhaled dry powder drugs in the lungs. Assay Drug Dev Technol. 2017;15(2):77–88.

    Article  CAS  PubMed  Google Scholar 

  6. Fröhlich E. Toxicity of orally inhaled drug formulations at the alveolar barrier: parameters for initial biological screening. Drug Deliv. 2017;24(1):891–905.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Radivojev S, Zellnitz S, Paudel A, Froehlich E. Searching for physiologically relevant in vitro dissolution techniques for orally inhaled drugs. Int J Pharm. 2019;556:45–56.

    Article  CAS  PubMed  Google Scholar 

  8. Hochhaus G, Horhota S, Hendeles L, Suarez S, Rebello J. Pharmacokinetics of orally inhaled drug products. AAPS J. 2015;17(3):769–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. García-Arieta A. A European perspective on orally inhaled products: in vitro requirements for a biowaiver. J Aerosol Med Pulm Drug Deliv. 2014;27(6):419–29.

    Article  PubMed  Google Scholar 

  10. Rohrschneider M, Bhagwat S, Krampe R, Michler V, Breitkreutz J, Hochhaus G. Evaluation of the transwell system for characterization of dissolution behavior of inhalation drugs: effects of membrane and surfactant. Mol Pharm. 2015;12(8):2618–24.

    Article  CAS  PubMed  Google Scholar 

  11. Borghardt JM, Weber B, Staab A, Kloft C. Pharmacometric models for characterizing the pharmacokinetics of orally inhaled drugs. AAPS J. 2015;17(4):853–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hassoun M, Malmlöf M, Scheibelhofer O, Kumar A, Bansal S, Selg E, et al. Use of PBPK modeling to evaluate the performance of dissolv it, a biorelevant dissolution assay for orally inhaled drug products. Mol Pharm. 2019;16(3):1245–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bhagwat S, Schilling U, Chen M-J, Wei X, Delvadia R, Absar M, et al. Predicting pulmonary pharmacokinetics from in vitro properties of dry powder inhalers. Pharm Res. 2017;34(12):2541–56.

    Article  CAS  PubMed  Google Scholar 

  14. Labiris NR, Dolovich MB. Pulmonary drug delivery. Part I: physiological factors affecting therapeutic effectiveness of aerosolized medications. Br J Clin Pharmacol. 2003;56(6):588–99.

  15. Campbell EA, Korzheva N, Mustaev A, Murakami K, Nair S, Goldfarb A, et al. Structural mechanism for rifampicin inhibition of bacterial RNA polymerase. Cell. 2001;104(6):901–12.

    Article  CAS  PubMed  Google Scholar 

  16. Maggi N, Pasqualucci CR, Ballotta R, Sensi P. Rifampicin: a new orally active rifamycin. Chemotherapy. 1966;11(5):285–92.

    Article  CAS  PubMed  Google Scholar 

  17. Misra A, Hickey AJ, Rossi C, Borchard G, Terada H, Makino K, et al. Inhaled drug therapy for treatment of tuberculosis. Tuberculosis. 2011;91(1):71–81.

    Article  CAS  PubMed  Google Scholar 

  18. Traini D, Young PM. Drug delivery for tuberculosis: is inhaled therapy the key to success? Vol. 8, Therapeutic delivery. Future Science; 2017. p. 819–21.

  19. Dartois V. The path of anti-tuberculosis drugs: from blood to lesions to mycobacterial cells. Nat Rev Microbiol. 2014;12(3):159–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pelizza G, Nebuloni M, Ferrari P, Gallo GG. Polymorphism of rifampicin. Farmaco Sci. 1977;32(7):471–81.

    CAS  PubMed  Google Scholar 

  21. Henwood SQ, Liebenberg W, Tiedt LR, Lötter AP, De Villiers MM. Characterization of the solubility and dissolution properties of several new rifampicin polymorphs, solvates, and hydrates. Drug Dev Ind Pharm. 2001;27(10):1017–30.

    Article  CAS  PubMed  Google Scholar 

  22. Groom CR, Bruno IJ, Lightfoot MP, Ward SC. The Cambridge structural database. Acta Crystallogr Sect B. International Union of Crystallography; 2016;72:171–9.

  23. Nogueira L de PP, de Oliveira YS, Fonseca J de C, Costa WS, Raffin FN, Ellena J, et al. Crystalline structure of the marketed form of Rifampicin: a case of conformational and charge transfer polymorphism. J Mol Struct. 2018;1155:260–6.

  24. Agrawal S, Ashokraj Y, Bharatam PV, Pillai O, Panchagnula R. Solid-state characterization of rifampicin samples and its biopharmaceutic relevance. Eur J Pharm Sci. 2004;22(2–3):127–44.

    Article  CAS  PubMed  Google Scholar 

  25. Kostewicz ES, Aarons L, Bergstrand M, Bolger MB, Galetin A, Hatley O, et al. PBPK models for the prediction of in vivo performance of oral dosage forms. Eur J Pharm Sci. 2014;57:300–21.

    Article  CAS  PubMed  Google Scholar 

  26. Eedara BB, Tucker IG, Das SC. A STELLA simulation model for in vitro dissolution testing of respirable size particles. Sci Rep. 2019;9(1):1–14.

    Article  Google Scholar 

  27. Chakraborty S, Yadav L, Aggarwal D. Prediction of in vivo drug performance using in vitro dissolution coupled with STELLA: a study with selected drug products. Drug Dev Ind Pharm. 2015;41(10):1667–73.

    Article  CAS  PubMed  Google Scholar 

  28. Eedara BB, Tucker IG, Das SC. In vitro dissolution testing of respirable size anti-tubercular drug particles using a small volume dissolution apparatus. Int J Pharm. 2019;559:235–44.

    Article  CAS  PubMed  Google Scholar 

  29. Eriksson J, Thörn H, Sjögren E, Holmstén L, Rubin K, Lennernäs H. Pulmonary Dissolution of Poorly Soluble Compounds Studied in an ex Vivo Rat Lung Model. Mol Pharm [Internet]. 2019 Jul 1;16(7):3053–64. Available from: https://doi.org/10.1021/acs.molpharmaceut.9b00289.

  30. Khadka P, Hill PC, Zhang B, Katare R, Dummer J, Das SC. A study on polymorphic forms of rifampicin for inhaled high dose delivery in tuberculosis treatment. Int J Pharm. 2020;587: 119602.

    Article  CAS  PubMed  Google Scholar 

  31. Kim CS, Eldridge MA. Aerosol deposition in the airway model with excessive mucus secretions. J Appl Physiol. 1985;59(6):1766–72.

    Article  CAS  PubMed  Google Scholar 

  32. Shah S, Fung K, Brim S, Rubin BK. AnIn Vitro Evaluation of the Effectiveness of Endotracheal Suction Catheters. Chest. 2005;128(5):3699–704.

    Article  PubMed  Google Scholar 

  33. Costa P, Lobo JMS. Modeling and comparison of dissolution profiles. Eur J Pharm Sci. 2001;13(2):123–33.

    Article  CAS  PubMed  Google Scholar 

  34. Garcia Contreras L, Sung J, Ibrahim M, Elbert K, Edwards D, Hickey A. Pharmacokinetics of inhaled rifampicin porous particles for tuberculosis treatment: insight into rifampicin absorption from the lungs of guinea pigs. Mol Pharm. 2015;12(8):2642–50.

    Article  CAS  PubMed  Google Scholar 

  35. Khadka P, Sinha S, Tucker IG, Dummer J, Hill PC, Katare R, et al. Pharmacokinetics of rifampicin after repeated intra-tracheal administration of amorphous and crystalline powder formulations to Sprague Dawley rats. Eur J Pharm Biopharm. 2021;162:1–11.

    Article  CAS  PubMed  Google Scholar 

  36. Oberdörster G. Lung clearance of inhaled insoluble and soluble particles. J Aerosol Med. 1988;1(4):289–330.

    Article  Google Scholar 

  37. Murdande SB, Pikal MJ, Shanker RM, Bogner RH. Aqueous solubility of crystalline and amorphous drugs: challenges in measurement. Pharm Dev Technol. 2011;16(3):187–200.

    Article  CAS  PubMed  Google Scholar 

  38. British Pharmacopoeia. Appendix XII C: Consistency of formulated preparations. Her Majesty’s Stationary Office, London; 2012.

  39. Svensson RJ, Aarnoutse RE, Diacon AH, Dawson R, Gillespie SH, Boeree MJ, et al. A population pharmacokinetic model incorporating saturable pharmacokinetics and autoinduction for high rifampicin doses. Clin Pharmacol Ther. 2018;103(4):674–83.

    Article  CAS  PubMed  Google Scholar 

  40. Acocella G. Clinical pharmacokinetics of rifampicin. Clin Pharmacokinet. 1978;3(2):108–27.

    Article  CAS  PubMed  Google Scholar 

  41. Laperche Y, Graillot C, Arondel J, Berthelot P. Uptake of rifampicin by isolated rat liver cells. Interaction with sulfobromophthalein uptake and evidence for separate carriers. Biochem Pharmacol. 1979;28(13):2065–9.

  42. Son Y-J, McConville JT. Development of a standardized dissolution test method for inhaled pharmaceutical formulations. Int J Pharm. 2009;382(1–2):15–22.

    Article  CAS  PubMed  Google Scholar 

  43. Zhang H, Fan Q, Wang YE, Neal CR, Zuo YY. Comparative study of clinical pulmonary surfactants using atomic force microscopy. Biochim Biophys Acta (BBA)-Biomembranes. 2011;1808(7):1832–42.

  44. Notter RH, Chess PR, Pryhuber GS. Lung surfactant: overview. In: Janes SM, editor. Encycl Respir Med. Second. Oxford: Academic Press; 2022. p. 90–9.

Download references

Acknowledgements

The authors would also like to acknowledge Nicole Wood for her help in running the in vitro dissolution experiments.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Prakash Khadka, Ian G. Tucker, Shyamal Das.

Methodology: Prakash Khadka, Ian G. Tucker, Shyamal Das.

Data curation: Prakash Khadka.

Formal analysis: Prakash Khadka, Ian G. Tucker, Shyamal Das.

Writing, review and editing: Prakash Khadka, Ian G. Tucker, Shyamal Das.

Project administration: Shyamal Das.

Corresponding author

Correspondence to Shyamal C. Das.

Ethics declarations

Conflict of Interest

The authors have no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 20 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khadka, P., Tucker, I.G. & Das, S.C. In vitro Dissolution Testing of Rifampicin Powder Formulations For Prediction of Plasma Concentration–Time Profiles After Inhaled Delivery. Pharm Res 40, 1153–1163 (2023). https://doi.org/10.1007/s11095-022-03439-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-022-03439-z

Keywords

Navigation