Skip to main content
Log in

Oral Delivery of Teriparatide Using a Nanoemulsion System: Design, in Vitro and in Vivo Evaluation

  • RESEARCH PAPER
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Investigate the possibility of delivering teriparatide orally using nanoemulsion.

Method

Teriparatide was allowed to interact with chitosan in the presence of HPβCD.The formed polyelectrolyte complex (PEC) was characterized by DSC, FTIR, DLS and for entrapment efficiency. PEC was the incorporated in an oil phase consisting of Oleic Acid, Labrasol and Plurol Oleique to form a nanoemulsion. This preparation was characterized for refractive index, viscosity, pH, conductivity, particle size, and morphology.Bioavailability of the preparation was evaluated using rabbits against SC injection. The efficacy of the formula was tested using ovariectomized rats (an osteoporosis animal model) and mechanical and histological tests were conducted on their bones. The stability of the preparation was evaluated by storing samples at 4o C, 25o C and 40o C for three months.

Results

PEC testing demonstrate a complex formation with particle size of 208 nm, zeta potential of +17 mV and entrapment efficiency of 49%. For the nanoemulsion, the results demonstrate the formation of a nano-sized dispersed system (108 nm) with a drug loading of 98% and a percent protection of 90% and 71% in SGF and SIF respectively. Bioavailability results showed a sustained release profile was achieved following the oral formulation administration. Efficacy studies showed improvement in the strength, thickness and connectivity of bones. Short-term stability study demostrated that the nanoemulsion is mostly stable at 4o C.

Conclusion

These findings demonstrate the ability of delivering Teriparatide orally using oleic acid based dispersion in combination with chitosan PEC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

DLS:

Dynamic light scattering

FTIR:

Fourier transform infra red

HPβCD:

Hydroxypropyl beta cyclodextrin

LMWC:

Low molecular weight chitosan

OVX:

Ovariectomized rat

PEC:

Polyelectrolyte complex

PLGA:

Poly lactide glycolic acid

rhPTH:

Recombinant human para thyroid hormone

SC:

Subcutaneous

SGF:

Simulated gastric fluid

SIF:

Simulated intestinal fluid

DSC:

Differential scanning calorimetry

References

  1. Osterhoff G, Morgan EF, Shefelbine SJ, Karim L,D McNamara LM, Augat p. bone mechanical properties and changes with osteoporosis. Injury. 2016;47(Suppl 2):S11–S20.

  2. Yang H, Albiol L, Chan WL, Wulsten D, Seliger A, Thelen M, et al. Examining tissue composition, whole-bone morphology and mechanical behavior of GorabPrx1mice tibiae: a mouse model of premature aging. J Biomech. 2017;65:145–53.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Bartolozzi E. The natural approach to osteoporosis. Clin Cases Miner Bone Metab. 2015;12(2):111–5.

    PubMed  PubMed Central  Google Scholar 

  4. Miladi K, Sfar S, Fessi H, Elaissari A. Drug carriers in osteoporosis: preparation, drug encapsulation and applications. Int J Pharm. 2013;445:181–95.

    Article  CAS  PubMed  Google Scholar 

  5. Sözen T, Özışık L, Başaran NÇ. An overview and management of osteoporosis. Eur J Rheumatol. 2017;4(1):46–56.

    Article  PubMed  Google Scholar 

  6. Bakhtiari N, Amini Bayat Z, Sagharidouz S, Vaez M. Overexpression of recombinant human Teriparatide, rhPTH (1-34) in Escherichia coli : an innovative gene fusion approach. Avicenna J Med Biotechnol. 2017;9(1):19–22.

    PubMed  PubMed Central  Google Scholar 

  7. Eli Lilly and Company. Teriparatide Injection. Material Safety Data Sheet.; 2019 December 12. Available from: http://www.ehs.lilly.com/msds/msds_teriparatide_injection.html.

  8. Lindsay HR, Krege JH, Marin F, Jin L, Stepan JJ. Teriparatide for osteoporosis: importance of the full course. Osteoporos Int. 2016;27(8):2395–410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Honeywell M, Phillips S, Branch E, Vo KA, Marks EI, Thompson M. Teriparatide for Osteoporosis: A Clinical Review. Drug Forcast. 2003;28(11):713–6.

    Google Scholar 

  10. Eli Lilly and Company. FORTEO,teriparatide injection for subcutaneoususe. Highlights of prescribing information.2019 December 12. Available from: https://pi.lilly.com/us/forteo-pi.pdf.

  11. Satterwhite J, Heathman M, Miller PD, Marín F, Glass EV, Dobnig H. Pharmacokinetics of teriparatide (rhPTH[1-34]) and calcium pharmacodynamics in postmenopausal women with osteoporosis. Calcif Tissue Int. 2010;87(6):485–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Durán-Lobato PM, Niu Z, Alonso MJ. Oral Delivery of Biologics for Precision Medicine. Adv Mater. 2019:e1901935. [Epub ahead of print].

  13. Choonara BF, Choonara YE, Kumar P, Bijukumar D, du Toit LC, Pillay V. A review of advanced oral drug delivery technologies facilitating the protection and absorption of protein and peptide molecules. Biotechnol Adv. 2014;32(7):1269–82.

    Article  CAS  PubMed  Google Scholar 

  14. Park K, Kwon IC. Oral protein delivery: current status and future prospect. React Funct Polym. 2011;71(3):280–7.

    Article  CAS  Google Scholar 

  15. Liu C, Kou Y, Zhang X, Cheng H, Chen X, Mao S. Strategies and industrial perspectives to improve oral absorption of biological macromolecules. Expert Opin Drug Deliv. 2018;15(3):223–33.

    Article  CAS  PubMed  Google Scholar 

  16. Goldberg M, Gomez-Orellana I. Challenges for the Oral delivery of macromolecules. Nat Rev Drug Discov. 2003;2:289–95.

    Article  CAS  PubMed  Google Scholar 

  17. Swatantra KS, Awani RK, Satyawan S. Chitosan: a platform for targeted drug delivery. Int J PharmTech Res. 2010;2(4):2271–82.

    Google Scholar 

  18. Wei G, Pettway GJ, McCauley L, Ma PX. The release profiles and bioactivity of parathyroid hormone from poly (lactic-co-glycolic acid) microspheres. Biomaterials. 2004;25:345–52.

    Article  CAS  PubMed  Google Scholar 

  19. Narayanan D, Anitha A, Jayakumar R, Nair SV, Chennazhi KP. Synthesis, characterization and preliminary in vitro evaluation of PTH 1-34 loaded chitosan nanoparticles for osteoporosis. J biomed Nanotech. 2012;8:98–106.

    Article  CAS  Google Scholar 

  20. Guo L, Ma E, Zhao H, Long Y, Zheng C, Duan M. Preliminary evaluation of a novel Oral delivery system for rhPTH1-34: in vitro and in vivo. Int J Pharm. 2011;420:172–9.

    Article  CAS  PubMed  Google Scholar 

  21. Badwan A, Al-Remawi M, El-Thaher T, Elsayed A. Oral Delivery of Protein Drugs Using Microemulsion European. 2007;Patent EP1797870.

  22. Qandil AM, Marji TJ, Al-Taani BM, Khaled AH, Badwan AA. Depolymerization of HMW into a predicted LMW chitosan and determination of the degree of deacetylation to guarantee its quality for research use. J excipients food chem. 2018;9(2):51–63.

    Google Scholar 

  23. Bonewald LF, Chapter 10 - Osteocyte Biology. In: Marcus R, Dempster DW, Cauley JA, Feldman D, editors. Osteoporosis (Fourth Edition) Academic Press; 2013. p. 209–234.

  24. Li G, Peng H, Corsi K, Usas A, Olshanski A, Huard J. Differential effect of BMP4 on NIH/3T3 and C2C12 cells: implications for endochondral bone formation. J Bone Miner Res. 2005;20(9):1611–23.

    Article  CAS  PubMed  Google Scholar 

  25. Theiszová M, Jantová S, Dragúnová J, Grznárová P, Palou M. Comparison the cytotoxicity of hydroxyapatite measured by direct cell counting and MTT test in murine fibroblast NIH-3T3 cells. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2005;149(2):393–6.

    Article  PubMed  Google Scholar 

  26. Jírová D, Kejlová K, Brabec M, Bendová H, Kolárová H. The benefits of the 3T3 NRU test in the safety assessment of cosmetics: long-term experience from pre-marketing testing in the Czech Republic. Toxicol in Vitro. 2003;17(5–6):791–6.

    Article  PubMed  CAS  Google Scholar 

  27. Gordan KC. Tissue Processing. In Bancroft JD, Stevens A, editors. Theory and Practice of histological Techniques. 3rd ed. London: Churchill Livingstone 1990; 43–59.

  28. Zhao S, Wu X, Guo W, Du Y, Yu L, Tang J. N-(2-hydroxyl) propyl-3-trimethyl ammonium chitosan chloride nanoparticle as a novel delivery system for parathyroid hormone-related protein 1–34. Int J Pharm. 2010;393:268–72.

    Article  CAS  PubMed  Google Scholar 

  29. Xie H. Preparation of Low Molecular Weight Chitosan by Complex Enzymes Hydrolysis. Int J Chem. 2011; 3(2).

  30. Jang MK, Nah JW. Characterization and modification of low molecular water-soluble chitosan for pharmaceutical application. Bull Kor Chem Soc. 2003;24(9):1303–7.

    Article  CAS  Google Scholar 

  31. Kima DG, Jeonga YI, Choia C, Rohb SH, Seong-Koo K, Mi-Kyeong J, et al. Retinol-encapsulated low molecular water-soluble chitosan nanoparticles. Int J Pharm. 2006;319:130–8.

    Article  CAS  Google Scholar 

  32. George SJ, Vasudevan DT. Studies on the preparation, characterization, and solubility of 2-HP-Β-Cyclodextrin-meclizine inclusion complex. J Young Pharm. 2012;4(4):220–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Koester LS, Xavier CR, Mayorga P, Valquiria L. Influence of B-Cyclodextrin Complexation on carbamazepine release from Hydroxypropyl methylcellulose matrix tablets. Eur J Pharm Biopharm. 2003;55:85–91.

    Article  CAS  PubMed  Google Scholar 

  34. Quattrocchi E, Kourlas H. Teriparatide: A Review. Clin Ther. 2004;26(6):841–54.

    Article  CAS  PubMed  Google Scholar 

  35. Komrakova M, Stuermer EK, Werner C, Wicke M, Kolios L, Sehmisch S, et al. Effect of human parathyroid hormone hPTH (1–34) applied at different regimes on fracture healing and muscle in Ovariectomized and healthy rats. Bone. 2010;47:480–92.

    Article  CAS  PubMed  Google Scholar 

  36. Chen Y, Heiman ML. Increased weight gain after ovariectomy is not a consequence of leptin resistance. Am J Physiol Endocrinol Metab. 2001;280(2):E315–22.

    Article  CAS  PubMed  Google Scholar 

  37. Washimi Y, Ito M, Morishima Y, Taguma Y, Ojima Y, Uzawa T, et al. Effect of combined human PTH(1–34) and calcitonin treatment in Ovariectomized rats. Bone. 2007;41:786–93.

    Article  CAS  PubMed  Google Scholar 

  38. Stewart AF, Cain RL, Burr DB, Jacob D, Turner CH, Hock JM. Six-month daily Administration of Parathyroid Hormone and Parathyroid Hormone–Related Protein Peptides to adult Ovariectomized rats markedly enhances bone mass and biomechanical properties: a comparison of human parathyroid hormone 1–34, parathyroid hormone–related protein 1–36, and SDZ-parathyroid hormone 893. J Bone Miner Res. 2000;15:1517–33.

    Article  CAS  PubMed  Google Scholar 

  39. Hejazi R, Amiji M. Chitosan-based gastrointestinal delivery systems. J Control Release. 2003;89(2):151–65.

    Article  CAS  PubMed  Google Scholar 

  40. Garcia-Fuentes M, Csabaand N, Alons MJ. Nanostructured chitosan carriers for Oral protein and peptide delivery. Drug Deliv. 2007:16–9.

  41. Agnihotri SA, Mallikarjuna NN, Aminabhavi TM. Recent advances on chitosan-based micro- and nanoparticles in drug delivery. J Control Release. 2004;100(1):5–28.

    Article  CAS  PubMed  Google Scholar 

  42. Salmaso S, Caliceti P. Self assembling Nanocomposites for protein delivery: Supramolecular interactions of soluble polymers with protein drugs. Int J Pharm. 2013;440:111–23.

    Article  CAS  PubMed  Google Scholar 

  43. Patel G, Misra A. Oral Delivery of Proteins and Peptides: Concepts and Applications, In: Ambikanandan Misra, editor. Challenges in Delivery of Therapeutic Genomics and Proteomics. London: Elsevier 2011; 481–529.

  44. Rekha MR, Sharma CP. Oral delivery of therapeutic protein/peptide for diabetes – future perspectives. Int J Pharm. 2013;440(1):48–62.

    Article  CAS  PubMed  Google Scholar 

  45. Carrier RL, Miller LA, Ahmed I. The utility of Cyclodextrins for enhancing Oral bioavailability. J Control Release. 2007;123:78–99.

    Article  CAS  PubMed  Google Scholar 

  46. Irie T, Onekama K. Cyclodextrins in peptide and protein delivery. Adv Drug Deli Rev. 1999;36(1):101–23.

    Article  CAS  Google Scholar 

  47. Sajeesh S, Sharma CP. Cyclodextrin–insulin complex encapsulated Polymethacrylic acid based nanoparticles for Oral insulin delivery. Int J Pharm. 2006;325:147–54.

    Article  CAS  PubMed  Google Scholar 

  48. Sharma P, Varma MS, Chawla HPS, Panchagnula R. Absorption enhancement, mechanistic and toxicity studies of medium chain fatty acids, Cyclodextrins and bile salts as Peroral absorption enhancers. Farmaco. 2005;60:884–93.

    Article  CAS  PubMed  Google Scholar 

  49. Trapani A, Lopedota A, Franco M, Cioffi N, Ieva E, Fuentes M, et al. A comparative study of chitosan and chitosan/Cyclodextrin nanoparticles as potential carriers for the Oral delivery of small peptides. Eur J Pharm Biopharma. 2010;75:26–32.

    Article  CAS  Google Scholar 

  50. Krauland AH, Alonso MJ. Chitosan/Cyclodextrin nanoparticles as macromolecular drug delivery system. Int J Pharm. 2007;340:134–42.

    Article  CAS  PubMed  Google Scholar 

  51. Berger J, Reist M, Mayer JM, Felt O, Gurny R. Structure and interactions in chitosan hydrogels formed by Complexation or aggregation for biomedical applications. Eur J Pharm Biopharma. 2004;57:35–52.

    Article  CAS  Google Scholar 

  52. Hamman JH. Chitosan based polyelectrolyte complexes as potential Carrier materials in drug delivery systems. Mar Drugs. 2010;8:1305–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Liu Z, Jiao Y, Wang Y, Zhou C, Zhang Z. Polysaccharides-based nanoparticles as drug delivery systems. Adv Drug Deliv Rev. 2008;60:1650–62.

    Article  CAS  PubMed  Google Scholar 

  54. Trapani A, Garcia-Fuentes M, Alonso MJ. Novel Drug Nanocarriers Combining Hydrophilic Cyclodextrins and Chitosan. Nanotechnology. 2008;19 (18).

  55. Calvo P, Remunan-Lopez C, Vila-Jato JL, Alonso MJ. Novel hydrophilic chitosan–polyethylene oxide nanoparticles as protein carriers. J Appl Polym Sci. 1997;63:125–32.

    Article  CAS  Google Scholar 

  56. Khalil SKH, El-Fekyb GS, El-Bannaa ST, Khalil WA. Preparation and evaluation of warfarin-β-Cyclodextrin loaded chitosan nanoparticles for transdermal delivery. Carbohyd Polym. 2012;90:1244–53.

    Article  CAS  Google Scholar 

  57. Assaf SM, Al-Jbour ND, Eftaiha AF, Elsayed AM, Al-Remawi MM, Qinna NA, et al. Factors involved in formulation of oily delivery system for proteins based on PEG-8 Caprylic/Capric glycerides and Polyglyceryl-6 Dioleate in a mixture of oleic acid with chitosan. J Disper Sci Technol. 2011;32(5):623–33.

    Article  CAS  Google Scholar 

  58. Vargas M, Albors A, Chiralt A, Gonzalez-Martınez C. Characterization of chitosan–oleic acid composite films. Food Hydrocoll. 2009;23:536–47.

    Article  CAS  Google Scholar 

  59. Koga K, Kusawake Y, Ito Y, Sugioka N, Shibata N, Takada K. Enhancing mechanism of Labrasol on intestinal membrane permeability of the hydrophilic drug gentamicin sulfate. Eur J Pharm Biopharm. 2006;64:82–91.

    Article  CAS  PubMed  Google Scholar 

  60. Djekic L, Primorac M. The influence of Cosurfactants and oils on the formation of pharmaceutical microemulsions based on PEG-8 Caprylic/Capric glycerides. Int J Pharm. 2008;352:231–9.

    Article  CAS  PubMed  Google Scholar 

  61. Cheng M, Wang J, Li Y, Liu X, Zhang X, Chen D, et al. Characterization of water-in-oil microemulsion for Oral delivery of earthworm Fibrinolytic enzyme. J Control Release. 2008;129:41–8.

    Article  CAS  PubMed  Google Scholar 

  62. Djordjevic L, Primorac M, Stupar M, Krajisnik D. Characterization of Caprylocaproyl Macrogolglycerides based microemulsion drug delivery vehicles for an Amphiphilic drug. Int J Pharm. 2004;271:11–9.

    Article  CAS  PubMed  Google Scholar 

  63. Gattefosse. Regulatory data sheet (RDS), Pharmaceutical market (human and veterinary medicines), Labrasol (Code: 3074); 2019 December 12. Available from: https://www.gattefosse.com/back/files/RDS%20Pharma_LABRASOL.pdf.

  64. Stolnik S, Shakesheff K. Formulation and delivery of therapeutic proteins. Biotechnol Lett. 2009;31:1–11.

    Article  CAS  PubMed  Google Scholar 

  65. Yu Z, Rogers TL, Hu J, Johnston KP, Williams RO. Preparation and characterization of microparticles containing peptide produced by a novel process: spray freezing into liquid. Eur J Pharm Biopharm. 2002;54:221–8.

    Article  CAS  PubMed  Google Scholar 

  66. Ratnaparkhi MP, Chaudhari SP, Pandya VA. Peptides and proteins in pharmaceuticals. Int J Curr Pharm Res. 2011;3(2):1–9.

    CAS  Google Scholar 

  67. Andersen P, Tankó LB, Andersen TL, Lundberg CV, Mo JA, Heegaard AM, et al. Ovariectomized rats as a model of postmenopausal osteoarthritis: validation and application. Arthritis Res Ther. 2004;6(2):R169–80.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Turner AS. Animal models of osteoporosis - necessity and limitation. Eur Cell Mater. 2001;1:66–81.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments and Disclosures

The author wish to thanks Deanship of Research for providing the funding for this work (169/2012). The authors wish to thank Dr. Faisal Athamneh from Faculty of Chemistry, Jordan University of Science and Technology for his help. The authors are also thankful for Dr. Munther Al-Shami for his help in the pharmacokinetic statistics. The authors further wish to thank Dr. Adnan Badwan from the Jordanian Pharmaceutical Manufacturing Company (JPM) and Dr Adnan Dakkuri from Feris State University for providing valuable suggestions and guidance for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bashar M Altaani.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Altaani, B.M., Almaaytah, A.M., Dadou, S. et al. Oral Delivery of Teriparatide Using a Nanoemulsion System: Design, in Vitro and in Vivo Evaluation. Pharm Res 37, 80 (2020). https://doi.org/10.1007/s11095-020-02793-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11095-020-02793-0

Key Words

Navigation