Skip to main content

Advertisement

Log in

ApoE-2 Brain-Targeted Gene Therapy Through Transferrin and Penetratin Tagged Liposomal Nanoparticles

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Apolipoprotein E2 (ApoE2) gene therapy is a potential disease-modifying therapy for Alzheimer’s disease (AD). We investigated the potential of plasmid encoding ApoE2 loaded brain-targeted functionalized-liposomes for treatment of AD. This was achieved via systemic administration of liposomes entrapping therapeutic gene targeting the brain of mice.

Methods

Targeting and transfection efficiency of designed liposomes were determined in bEnd.3, primary glial and primary neuronal cells. The ability of liposomal formulations to translocate across in vitro blood-brain barrier (BBB) and, thereafter, transfect primary neuronal cells was investigated using in vitro triple co-culture BBB model. We quantified ApoE expression in the brain of mice after single intravenous injection of brain-targeted liposomes loaded with plasmid ApoE2.

Results

Dual surface modification enhanced the in vitro transfection efficiency of designed liposomes. Successful delivery of therapeutic gene overcoming BBB by Transferrin-Penetratin- modified liposomes was demonstrated both in vitro and in vivo. Significant (p < 0.05) increase in ApoE levels in the brain of mice was observed after intravenous administration of Tf-Pen-liposomes encasing plasmid ApoE2.

Conclusion

The results indicate that dual-ligand based liposomal gene delivery systems had both enhanced brain targeting and gene delivery efficiencies. Transferrin-Penetratin modified liposomes for delivery of plasmid ApoE2 has great potential for AD treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

AD:

Alzheimer’s disease

BBB:

Blood brain barrier

CPP:

Cell-penetrating peptide

DOPE:

1,2-dioleoyl-sn-glycero-3-phosphoethanolamine

DOTAP:

1,2-dioleoyl-3-trimethylammonium-propane

FBS:

Fetal bovine serum

H&E:

Hematoxylin and eosin

LOAD:

Late onset form of Alzheimer’s disease

MTT:

(3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide)

p/s:

Penicillin and streptomycin

Pen:

Penetratin

TEER:

Transepithelial electrical resistance

Tf:

Transferrin

TfR:

Transferrin receptor

References

  1. Frozza RL, Lourenco MV, de Felice FG. Challenges for Alzheimer’s disease therapy: insights from novel mechanisms beyond memory defects. Front Neurosci. 2018;12:1–13.

    Article  Google Scholar 

  2. Frere S, Slutsky I. Alzheimer’s disease: from firing instability to homeostasis network collapse. Neuron. 2018;97(1):32–58.

    Article  CAS  Google Scholar 

  3. Huang Y, Mucke L. Alzheimer mechanisms and therapeutic strategies. Cell. 2012;148(6):1204–22.

    Article  CAS  Google Scholar 

  4. Henriques AG, Oliveira JM, Carvalho LP. da Cruz e Silva OAB. A?? Influences cytoskeletal signaling cascades with consequences to Alzheimer???S disease. Mol Neurobiol. 2014;52(3):1391–407.

    Article  Google Scholar 

  5. Holtzman D, Herz J. Apolipoprotein E and apolipoprotein receptors: normal biology and roles in Alzheimer’s disease. Cold Spring Harb Perspect Med. 2012;2(3):a006312.

    Article  Google Scholar 

  6. Kumar A, Singh A. Ekavali. A review on Alzheimer’s disease pathophysiology and its management: an update. Pharmacol Rep. 2015;67(2):195–203.

    Article  CAS  Google Scholar 

  7. Sadigh-Eteghad S, Sabermarouf B, Majdi A, Talebi M, Farhoudi M, Mahmoudi J. Amyloid-beta: a crucial factor in Alzheimer’s disease. Med Princ Pract. 2015;24(1):1–10.

    Article  Google Scholar 

  8. Korolev IO. Alzheimer ‘s disease : a clinical and basic science review. Med Student Res J. 2014;04:24–33.

    Google Scholar 

  9. Sun X, Dong C, Levin B, Crocco E, Loewenstein D, Zetterberg H, et al. APOE ε4 carriers may undergo synaptic damage conferring risk of Alzheimer’s disease. Alzheimers Dement. 2016;12(11):1159–66.

    Article  Google Scholar 

  10. Liu CC, Zhao N, Fu Y, Wang N, Linares C, Tsai CW, et al. ApoE4 accelerates early seeding of amyloid pathology. Neuron. 2017;96(5):1024–1032.e3.

    Article  CAS  Google Scholar 

  11. Huang YWA, Zhou B, Wernig M, Südhof TC. ApoE2, ApoE3, and ApoE4 differentially stimulate APP transcription and Aβ secretion. Cell. 2017;168(3):427–441.e21.

    Article  CAS  Google Scholar 

  12. Federoff HJ. Alzheimer’s disease: reducing the burden with ApoE2. Gene Ther. 2005;12(13):1019–29.

    Article  CAS  Google Scholar 

  13. Salomon-Zimri S, Glat MJ, Barhum Y, Luz I, Boehm-Cagan A, Liraz O, et al. Reversal of ApoE4-driven brain pathology by vascular endothelial growth factor treatment. J Alzheimers Dis. 2016;53(4):1443–58.

    Article  CAS  Google Scholar 

  14. Visser CC, Voorwinden LH, DJ a C, Danhof M, De Boer AG. Characterization and modulation of the transferrin receptor on brain capillary endothelial cells. Pharm Res. 2004;21(5):761–9.

    Article  CAS  Google Scholar 

  15. Johnsen KB, Moos T. Revisiting nanoparticle technology for blood-brain barrier transport: unfolding at the endothelial gate improves the fate of transferrin receptor-targeted liposomes. J Control Release. 2016;222:32–46.

    Article  CAS  Google Scholar 

  16. Chikh GG, Kong S, Bally MB, Meunier JC, Schutze-Redelmeier MP. Efficient delivery of Antennapedia homeodomain fused to CTL epitope with liposomes into dendritic cells results in the activation of CD8+ T cells. J Immunol. 2001;167(11):6462–70.

    Article  CAS  Google Scholar 

  17. Console S, Marty C, García-Echeverría C, Schwendener R, Ballmer-Hofer K. Antennapedia and HIV transactivator of transcription (TAT) “protein transduction domains” promote endocytosis of high molecular weight cargo upon binding to cell surface glycosaminoglycans. J Biol Chem. 2003;278(37):35109–14.

    Article  CAS  Google Scholar 

  18. Wilhelm I, Krizbai IA. In vitro models of the blood-brain barrier for the study of drug delivery to the brain. Mol Pharm. 2014;11(7):1949–63.

    Article  CAS  Google Scholar 

  19. Zylberberg C, Gaskill K, Pasley S, Matosevic S. Engineering liposomal nanoparticles for targeted gene therapy. Gene Ther. 2017;24(8):441–52.

    Article  CAS  Google Scholar 

  20. Wilhelm I. In Vitro models of the blood − brain barrier for the study of drug delivery to the brain. 2014

  21. dos Santos Rodrigues B, Oue H, Banerjee A, Kanekiyo T, Singh J. Dual functionalized liposome-mediated gene delivery across triple co-culture blood brain barrier model and specific in vivo neuronal transfection. J Control Release. 2018;286:264–78.

    Article  Google Scholar 

  22. Kim J, Basak JM, Holtzman DM. The role of apolipoprotein E in Alzheimer’s disease. Neuron. 2009;63(3):287–303.

    Article  CAS  Google Scholar 

  23. Shi Y, Yamada K, Liddelow SA, Smith ST, Zhao L, Luo W, et al. ApoE4 markedly exacerbates tau-mediated neurodegeneration in a mouse model of tauopathy. Nature. 2017;549(7673):523–7.

    Article  Google Scholar 

  24. Conejero-Goldberg C, Gomar JJ, Bobes-Bascaran T, Hyde TM, Kleinman JE, Herman MM, et al. APOE2 enhances neuroprotection against Alzheimer’s disease through multiple molecular mechanisms. Mol Psychiatry. 2014;19(11):1243–50.

    Article  CAS  Google Scholar 

  25. Suri S, Heise V, Trachtenberg AJ, Mackay CE. The forgotten APOE allele: a review of the evidence and suggested mechanisms for the protective effect of APOE e2. Neurosci Biobehav Rev. 2013;37(10):2878–86.

    Article  CAS  Google Scholar 

  26. Dodart J-C, Marr RA, Koistinaho M, Gregersen BM, Malkani S, Verma IM, et al. Gene delivery of human apolipoprotein E alters brain Abeta burden in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci U S A. 2005;102(4):1211–6.

    Article  CAS  Google Scholar 

  27. Wen MM, El-Salamouni NS, El-Refaie WM, Hazzah HA, Ali MM, Tosi G, et al. Nanotechnology-based drug delivery systems for Alzheimer’s disease management: technical, industrial, and clinical challenges. J Control Release. 2017;245:95–107.

    Article  CAS  Google Scholar 

  28. Kim BK, Hwang GB, Seu YB, Choi JS, Jin KS, Doh KO. DOTAP/DOPE ratio and cell type determine transfection efficiency with DOTAP-liposomes. Biochim Biophys Acta Biomembr. 2015;1848(10):1996–2001.

    Article  CAS  Google Scholar 

  29. Briuglia M-L, Rotella C, McFarlane A, Lamprou DA. Influence of cholesterol on liposome stability and on in vitro drug release. Drug Deliv Transl Res. 2015;5(3):231–42.

    Article  CAS  Google Scholar 

  30. Mahendra A, James HP, Jadhav S. PEG-grafted phospholipids in vesicles: effect of PEG chain length and concentration on mechanical properties. Chem Phys Lipids. 2019;218:47–56.

    Article  CAS  Google Scholar 

  31. Immordino ML, Dosio F, Cattel L. Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential. Int J Nanomedicine. 2006;1(3):297–315.

    Article  CAS  Google Scholar 

  32. Buschmann MD, Merzouki A, Lavertu M, Thibault M, Jean M, Darras V. Chitosans for delivery of nucleic acids. Adv Drug Deliv Rev. 2013;65(9):1234–70.

    Article  CAS  Google Scholar 

  33. Mao S, Sun W, Kissel T. Chitosan-based formulations for delivery of DNA and siRNA. Adv Drug Deliv Rev. 2010;62(1):12–27.

    Article  CAS  Google Scholar 

  34. Mansouri S, Lavigne P, Corsi K, Benderdour M, Beaumont E, Fernandes JC. Chitosan-DNA nanoparticles as non-viral vectors in gene therapy: strategies to improve transfection efficacy. Eur J Pharm Biopharm. 2004;57(1):1–8.

    Article  CAS  Google Scholar 

  35. Ishii T, Okahata Y, Sato T. Mechanism of cell transfection with plasmid / chitosan complexes. Biochim Biophys Acta. 2001;1514:51–64.

    Article  CAS  Google Scholar 

  36. Sato T, Ishii T, Okahata Y. In vitro gene delivery mediated by chitosan. Effect of pH, serum, and molecular mass of chitosan on the transfection efficiency. Biomaterials. 2001;22(15):2075–80.

    Article  CAS  Google Scholar 

  37. Cheng P-W. Receptor ligand-facilitated gene transfer: enhancement of liposome-mediated gene transfer and expression by transferrin. Hum Gene Ther. 1996 Feb 10;7(3):275–82.

    Article  CAS  Google Scholar 

  38. Gupta B, Levchenko TS, Torchilin VP. TAT peptide-modified liposomes provide enhanced gene delivery to intracranial human brain tumor xenografts in nude mice. Oncol Res. 2007;16(8):351–9.

    Article  Google Scholar 

  39. Committee F04 Medical and surgical materials and devices SF 1. BTM. Standard practice for assessment of hemolytic properties of materials. Annu B ASTM Stand 2009;1–5.

  40. Hudry E, Dashkoff J, Roe AD, Takeda S, Koffie RM, Hashimoto T, et al. Gene transfer of human Apoe isoforms results in differential modulation of amyloid deposition and neurotoxicity in mouse brain. Sci Transl Med. 2013;5(212):212ra161.

    Article  Google Scholar 

  41. Hu J, Liu CC, Chen XF, Zhang YW, Xu H, Bu G. Opposing effects of viral mediated brain expression of apolipoprotein E2 (apoE2) and apoE4 on apoE lipidation and Aβ metabolism in apoE4-targeted replacement mice. Mol Neurodegener. 2015;10(1):1–11.

    Article  Google Scholar 

Download references

Acknowledgments and Disclosures

This research was supported by National Institutes of Health (Grant R01AG051574). B.S.R. is supported by doctoral fellowship from The Brazilian National Council for Scientific and Technological Development (CNPq, Brazil) with a scholarship for B.S.R (Full Doctorate Fellowship (GDE): 221327/2014–2). The authors report no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jagdish Singh.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

dos Santos Rodrigues, B., Kanekiyo, T. & Singh, J. ApoE-2 Brain-Targeted Gene Therapy Through Transferrin and Penetratin Tagged Liposomal Nanoparticles. Pharm Res 36, 161 (2019). https://doi.org/10.1007/s11095-019-2691-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11095-019-2691-7

KEY WORDS

Navigation