Skip to main content
Log in

Effects of Temperature and Ionic Strength of Dissolution Medium on the Gelation of Amorphous Lurasidone Hydrochloride

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Amorphous lurasidone hydrochloride (LH) showed decreased dissolution behavior in comparison to crystalline LH owing to gelation during dissolution as reported in our previous study. The current study aims to investigate external factors including temperature and ionic strength on the gelation and hence the dissolution of amorphous LH.

Methods

Dissolution tests of amorphous LH were performed under different temperatures and buffer ionic strengths. The formed gels were characterized by rheology study, texture analysis, PLM, SEM, DSC, XRPD and FTIR.

Results

With the increase of temperature and ionic strength of medium, the dissolution of amorphous LH decreased, while the strength, hardness and adhesiveness of in situ formed gel enhanced. Amorphous LH converted into its crystalline state during dissolution and the crystallization rate was affected by medium conditions. With medium temperature increasing from 30°C to 45°C, the gel microstructure changed from interconnecting fibrillar network to spherical particle aggregate. On the other hand, the formed spherulitic gel aggregate exhibited increased particle size when increasing the ionic strength of medium.

Conclusions

With increase of temperature and ionic strength, the gel strength of in situ formed gel from amorphous LH enhanced with more compact microstructure, subsequently leading to decreased dissolution profiles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

BCS:

Biopharmaceutics Classification System

DSC:

Differential scanning calorimetry

FTIR:

Fourier transform infrared spectroscopy

HPMC:

Hydroxypropyl methylcellulose

LH:

Lurasidone hydrochloride

PLM:

Polarized light microscopy

SEM:

Scanning electron microscopy

XRPD:

X-ray powder diffraction

Rererences

  1. Di L, Fish PV, Mano T. Bridging solubility between drug discovery and development. Drug Discov Today. 2012;17(9–10):486–95.

    Article  CAS  PubMed  Google Scholar 

  2. Engers D, Teng J, Jimenez-Novoa J, Gent P, Hossack S, Campbell C, et al. A solid-state approach to enable early development compounds: selection and animal bioavailability studies of an itraconazole amorphous solid dispersion. J Pharm Sci. 2010;99(9):3901–22.

    Article  CAS  PubMed  Google Scholar 

  3. Jójárt-Laczkovich O, Szabó-Révész P. Amorphization of a crystalline active pharmaceutical ingredient and thermoanalytical measurements on this glassy form. J Therm Anal Calorim. 2010;102(1):243–7.

    Article  CAS  Google Scholar 

  4. Yu L. Amorphous pharmaceutical solids: preparation, characterization and stabilization. Adv Drug Deliv Rev. 2001;48(1):27–42.

    Article  CAS  PubMed  Google Scholar 

  5. Zhang K, Yu H, Luo Q, Yang S, Lin X, Zhang Y, et al. Increased dissolution and oral absorption of itraconazole/Soluplus extrudate compared with itraconazole nanosuspension. Eur J Pharm Biopharm. 2013;85(3 Pt B):1285–92.

    Article  CAS  PubMed  Google Scholar 

  6. Alonzo DE, Zhang GG, Zhou D, Gao Y, Taylor LS. Understanding the behavior of amorphous pharmaceutical systems during dissolution. Pharm Res. 2010;27(4):608–18.

    Article  CAS  PubMed  Google Scholar 

  7. Hancock BC, Parks M. What is the true solubility advantage for amorphous pharmaceuticals? Pharm Res. 2000;17(4):397–404.

    Article  CAS  PubMed  Google Scholar 

  8. Chawla G, Bansal AK. A comparative assessment of solubility advantage from glassy and crystalline forms of a water-insoluble drug. Eur J Pharm Sci. 2007;32(1):45–57.

    Article  CAS  PubMed  Google Scholar 

  9. Kim JS, Kim MS, Park HJ, Jin SJ, Lee S, Hwang SJ. Physicochemical properties and oral bioavailability of amorphous atorvastatin hemi-calcium using spray-drying and SAS process. Int J Pharm. 2008;359(1–2):211–9.

    Article  CAS  PubMed  Google Scholar 

  10. Zhao QF, Wang TY, Wang J, Zheng L, Jiang TY, Cheng G, et al. Template-directed hydrothermal synthesis of hydroxyapatite as a drug delivery system for the poorly water-soluble drug carvedilol. Appl Surf Sci. 2011;257(23):10126–10,133.

    Article  CAS  Google Scholar 

  11. Hamaura T, Kusai A, Nishimura K. Gel formation of cefpodoxime proxetil. Stp Pharma Sci. 1995;5(4):324–31.

    Google Scholar 

  12. Law D, Krill SL, Schmitt EA, Fort JJ, Qiu Y, Wang W, et al. Physicochemical considerations in the preparation of amorphous ritonavir-poly(ethylene glycol) 8000 solid dispersions. J Pharm Sci. 2001;90(8):1015–25.

    Article  CAS  PubMed  Google Scholar 

  13. Meulenaar J, Beijnen JH, Schellens JH, Nuijen B. Slow dissolution behaviour of amorphous capecitabine. Int J Pharm. 2013;441(1–2):213–7.

    Article  CAS  PubMed  Google Scholar 

  14. Fujiki S, Iwao Y, Kobayashi M, Miyagishima A, Itai S. Stabilization mechanism of clarithromycin tablets under gastric pH conditions. Chem Pharm Bull. 2011;59(5):553–8.

    Article  CAS  PubMed  Google Scholar 

  15. Noguchi S, Takiyama K, Fujiki S, Iwao Y, Miura K, Itai S. Polymorphic transformation of antibiotic clarithromycin under acidic condition. J Pharm Sci. 2014;103(2):580–6.

    Article  CAS  PubMed  Google Scholar 

  16. Inukai K, Takiyama K, Noguchi S, Iwao Y, Itai S. Effect of gel formation on the dissolution behavior of clarithromycin tablets. Int J Pharm. 2017;521(1–2):33–9.

    Article  CAS  PubMed  Google Scholar 

  17. Furitsu H, Suzuki Y. Composition medicamenteuse. 2006. WO2006030826A1.

  18. Pang Z, Wei Y, Wang N, Zhang J, Gao Y, Qian S. Gel formation of puerarin and mechanistic study during its cooling process. Int J Pharm. 2018;548(1):625–35.

    Article  CAS  PubMed  Google Scholar 

  19. Xing B, Yu CW, Chow KH, Ho PL, Fu D, Xu B. Hydrophobic interaction and hydrogen bonding cooperatively confer a vancomycin hydrogel: a potential candidate for biomaterials. J Am Chem Soc. 2002;124(50):14846–14,847.

    Article  CAS  PubMed  Google Scholar 

  20. Flory PJ. Introductory lecture. Faraday Discuss Chem Soc. 1974;57(5):7–18.

    Article  CAS  Google Scholar 

  21. Tanaka T. Gels Sci Am. 1981;244(1):124–36 138.

    Article  CAS  PubMed  Google Scholar 

  22. Terech P, Wade RH. The relationship between a dried and native steroid gel. J Colloid Interface Sci. 1988;125:542–51.

    Article  CAS  Google Scholar 

  23. Schott H. Kinetics of swelling of polymers and their gels. J Pharm Sci. 1992;81(5):467–70.

    Article  CAS  PubMed  Google Scholar 

  24. Kristl J, Smidkorbar J, Struc E, Schara M, Rupprecht H. Hydrocolloids and gels of chitosan as drug carriers. Int J Pharm. 1993;99(1):13–9.

    Article  CAS  Google Scholar 

  25. Hayakawa E, Furuya K, Kuroda T, Moriyama M, Kondo A. Studies on the dissolution behavior of doxorubicin hydrochloride freeze-dried product. Chem Pharm Bull. 1990;38(12):3434–9.

    Article  CAS  Google Scholar 

  26. George M, Weiss RG. Molecular organogels. Soft matter comprised of low-molecular-mass organic gelators and organic liquids. Acc Chem Res. 2006;39(8):489–97.

    Article  CAS  PubMed  Google Scholar 

  27. Terech P, Weiss RG. Low molecular mass gelators of organic liquids and the properties of their gels. Chem Rev. 1997;97(8):3133–59.

    Article  CAS  PubMed  Google Scholar 

  28. Qian S, Wang S, Li Z, Wang X, Ma D, Liang S, et al. Charge-assisted bond N(+)H mediates the gelation of amorphous lurasidone hydrochloride during dissolution. Int J Pharm. 2017;518(1–2):335–41.

    Article  CAS  PubMed  Google Scholar 

  29. Mittal A, Yadav M, Choudhary D, Shrivastava B. Enhancement of solubility of lurasidone HCl using solid dispersion technique. Int J Res Ayurveda Pharm. 2014;5(5):632–7.

    Article  CAS  Google Scholar 

  30. Sanford M. Lurasidone: in the treatment of schizophrenia. CNS Drugs. 2013;27(1):67–80.

    Article  CAS  PubMed  Google Scholar 

  31. Lee KR, Chae YJ, Koo TS. Pharmacokinetics of lurasidone, a novel atypical anti-psychotic drug, in rats. Xenobiotica. 2011;41(12):1100–7.

    Article  CAS  PubMed  Google Scholar 

  32. Qian S, Heng W, Wei Y, Zhang J, Gao Y. Coamorphous lurasidone hydrochloride-saccharin with charge-assisted hydrogen bonding interaction shows improved physical stability and enhanced dissolution with pH-independent solubility behavior. Cryst Growth Des. 2015;15(6):2920–8.

    Article  CAS  Google Scholar 

  33. Qian S, Li Z, Heng W, Liang S, Ma D, Gao Y, et al. Charge-assisted intermolecular hydrogen bond formed in coamorphous system is important to relieve the pH-dependent solubility behavior of lurasidone hydrochloride. RSC Adv. 2016;6(108):106396–106,412.

    Article  CAS  Google Scholar 

  34. Treptow RS. Le Châtelier’s principle applied to the temperature dependence of solubility. J Chem Educ. 1984;61(6):499–502.

    Article  CAS  Google Scholar 

  35. Imaizumi H, Nambu N, Nagai T. Stability and several physical properties of amorphous and crystalline forms of indomethacin. Chem Pharm Bull. 1980;28(9):2565–9.

    Article  CAS  PubMed  Google Scholar 

  36. Sato T, Okada A, Sekiguchi K, Tsuda Y. Difference in physico-pharmaceutical properties between crystalline and non crystalline 9,3″-diacetylmidecamycin. Chem Pharm Bull. 1981;29(9):2675–82.

    Article  CAS  Google Scholar 

  37. Babu JS, Mondal C, Sengupta S, Karmakar S. Excess vibrational density of states and the brittle to ductile transition in crystalline and amorphous solids. Soft Matter. 2016;12(4):1210–8.

    Article  CAS  PubMed  Google Scholar 

  38. Lau KC, Dunlap BI. Molecular dynamics simulation of yttria-stabilized zirconia (YSZ) crystalline and amorphous solids. J Phys Condens Matter. 2011;23(3).

    PubMed  Google Scholar 

  39. Hancock BC, Zograf G. Characteristics and significance of the amorphous state in pharmaceutical systems. J Pharm Sci. 1997;86(1):1–12.

    Article  CAS  PubMed  Google Scholar 

  40. Hancock BC, Zografi G. The relationship between the glass-transition temperature and the water-content of amorphous pharmaceutical solids. Pharm Res. 1994;11(4):471–7.

    Article  CAS  PubMed  Google Scholar 

  41. Andronis V, Zografi G. Molecular mobility of supercooled amorphous indomethacin, determined by dynamic mechanical analysis. Pharm Res. 1997;14(4):410–4.

    Article  CAS  PubMed  Google Scholar 

  42. Collins KD. Charge density-dependent strength of hydration and biological structure. Biophys J. 1997;72(1):65–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Asare-Addo K, Conway BR, Larhrib H, Levina M, Rajabi-Siahboomi AR, Tetteh J, et al. The effect of pH and ionic strength of dissolution media on in-vitro release of two model drugs of different solubilities from HPMC matrices. Colloids Surf B: Biointerfaces. 2013;111:384–91.

    Article  CAS  PubMed  Google Scholar 

  44. Porumb H. The solution spectroscopy of drugs and the drug-nucleic acid interactions. Prog Biophys Mol Biol. 1978;34(3):175–95.

    CAS  PubMed  Google Scholar 

  45. Peddireddy KR, Capron I, Nicolai T, Benyahia L. Gelation kinetics and network structure of cellulose nanocrystals in aqueous solution. Biomacromolecules. 2016;17(10):3298–304.

    Article  CAS  PubMed  Google Scholar 

  46. Hayakawa E, Furuya K, Ueno H, Kuroda T, Moriyama M, Kondo A. Visible absorption and proton nuclear magnetic resonance studies on the self-association of doxorubicin in aqueous solution. Chem Pharm Bull. 1991;39(4):1009–12.

    Article  CAS  Google Scholar 

  47. Wang L, Shi X, Wang J. A temperature-responsive supramolecular hydrogel: preparation, gel-gel transition and molecular aggregation. Soft Matter. 2018;14(16):3090–5.

    Article  CAS  PubMed  Google Scholar 

  48. Liu XY, Sawant PD. Mechanism of the formation of self-organized microstructures in soft functional materials. Adv Mater. 2002;14(6):421–6.

    Article  Google Scholar 

  49. Lau MH, Tang J, Paulson AT. Texture profile and turbidity of gellan/gelatin mixed gels. Food Res Int. 2000;33(8):665–71.

    Article  CAS  Google Scholar 

  50. Huang M, Kennedy JF, Li B, Xu X, Xie BJ. Characters of rice starch gel modified by gellan, carrageenan, and glucomannan: A texture profile analysis study. Carbohydr Polym. 2007;69(3):411–8.

    Article  CAS  Google Scholar 

  51. Sanderson GR. Gellan gum. In: Harris P, editor. Food gels. New York, USA: Elsevier; 1990. p. 201–32.

    Chapter  Google Scholar 

  52. Wolf CL, Beach S, LaVelle WM, Clark RC. Gellan gum/gelation blends. 1989. US4876105.

  53. Yoshioka M, Hancock BC, Zografi G. Crystallization of indomethacin from the amorphous state below and above its glass transition temperature. J Pharm Sci. 1994;83(12):1700–5.

    Article  CAS  PubMed  Google Scholar 

  54. Wang R, Liu XY, Xiong J, Li J. Real-time observation of fiber network formation in molecular organogel: supersaturation-dependent microstructure and its related rheological property. J Phys Chem B. 2006;110(14):7275–80.

    Article  CAS  PubMed  Google Scholar 

  55. Liu XY, Sawant PD, Tan WB, Noor IB, Pramesti C, Chen BH. Creating new supramolecular materials by architecture of three-dimensional nanocrystal fiber networks. J Am Chem Soc. 2002;124(50):15055–15,063.

    Article  CAS  PubMed  Google Scholar 

  56. Wang RY, Liu XY, Narayanan J, Xiong JY, Li JL. Architecture of fiber network: from understanding to engineering of molecular gels. J Phys Chem B. 2006;110(51):25797–25,802.

    Article  CAS  PubMed  Google Scholar 

  57. Okubo T, Tsuchida A, Kato T. Nucleation and growth processes in the colloidal crystallization of silica spheres in the presence of sodium chloride as studied by reflection spectroscopy. Colloid Polym Sci. 1999;277(2–3):191–6.

    Article  CAS  Google Scholar 

  58. Bhamidi V, Skrzypczak-Jankun E, Schall CA. Dependence of nucleation kinetics and crystal morphology of a model protein system on ionic strength. J Cryst Growth. 2001;232(1–4):77–85.

    Article  CAS  Google Scholar 

  59. Cerdeira M, Puppo MC, Martini S, Herrera ML. Effects of salts on crystallization kinetics and rheological behavior of concentrated alpha,alpha-trehalose solutions. J Food Sci. 2003;68(9):2644–50.

    Article  CAS  Google Scholar 

  60. Longinotti MP, Mazzobre MF, Buera MP, Corti HR. Effect of salts on the properties of aqueous sugar systems in relation to biomaterial stabilization - Part 2. Sugar crystallization rate and electrical conductivity behavior. Phys Chem Chem Phys. 2002;4(3):533–40.

    Article  CAS  Google Scholar 

  61. Grinshtein J, Frydman L. Solid state separated-local-field NMR spectroscopy on half-integer quadrupolar nuclei: principles and applications to borane analysis. J Am Chem Soc. 2003;125(24):7451–60.

    Article  CAS  PubMed  Google Scholar 

  62. Heinz A, Strachan CJ, Gordon KC, Rades T. Analysis of solid-state transformations of pharmaceutical compounds using vibrational spectroscopy. J Pharm Pharmacol. 2009;61(8):971–88.

    Article  CAS  PubMed  Google Scholar 

  63. Talor LS, Zhang GGZ. Physical chemistry of supersaturated solutions and implications for oral absorption. Adv Drug Deliv Rev. 2016;101:122–42.

    Article  CAS  Google Scholar 

  64. Gao Y, Gesenberg C, Zheng W. Oral formulations for preclinical studies: principle, design, and development considerations. In: Qiu Y, Chen Y, Zhang GGZ, Yu L, Mantri RV, editors. Developing solid oral dosage forms: pharmaceutical theory and practice. London: Academic Press; 2017. p. 455–95.

    Chapter  Google Scholar 

  65. Raina SA, Zhang GGZ, Alonzo DE, Wu J, Zhu D, Catron ND, et al. Enhancements and limits in drug membrane transport using supersaturated solutions of poorly water soluble drugs. J Pharm Sci. 2014;103:2736–48.

    Article  CAS  PubMed  Google Scholar 

  66. Van Eerdenbrugh B, Raina S, Hsieh Y-L, Augustijns P, Taylor L. Classification of the crystallization behavior of amorphous active pharmaceutical ingredients in aqueous environments. Pharm Res. 2014;31:969–82.

    Article  PubMed  CAS  Google Scholar 

  67. Estroff LA, Hamilton AD. Water gelation by small organic molecules. Chem Rev. 2004;104(3):1201–17.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

This research was supported by National Natural Science Foundation of China (81,703,712, 81,773,675, 81,873,012), “Double First-Class” University Project (CPU2018GY11, CPU2018GY27), Top-notch Academic Programs Project of Jiangsu Higher Education Institutions (TAPP), Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), Jiangsu Province Double Innovation Talent Program (2015), Postgraduate Research & Practice Innovation Program of Jiangsu Province. The authors declare no competing financial interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianjun Zhang or Shuai Qian.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 606 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heng, W., Wei, Y., Zhou, S. et al. Effects of Temperature and Ionic Strength of Dissolution Medium on the Gelation of Amorphous Lurasidone Hydrochloride. Pharm Res 36, 72 (2019). https://doi.org/10.1007/s11095-019-2611-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11095-019-2611-x

Keywords

Navigation