Skip to main content
Log in

Intra-Vial Heterogeneity in Physical Form of Mannitol in Colyophilized Binary Systems

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To study spatial heterogeneity in phase composition when mannitol is co-lyophilized with non-crystallizing lyoprotectant, such as sucrose or trehalose. To study the influence of formulation composition and processing conditions on the extent of mannitol hemihydrate (MHH) formation in the final lyophile.

Methods

We used synchrotron X-ray diffractometry (XRD) to spatially map and thereby comprehensively characterize mannitol phase composition in unperturbed lyophiles. Low temperature thermal analysis and XRD was used to study phase behavior of frozen systems.

Result

When colyophilized with sucrose, trehalose or lysozyme as a second solute, mannitol crystallized partially as MHH (mannitol hemihydrate). The MHH content, based on the intensity of characteristic MHH peak (d-spacing 4.92 Å), was highest in the middle region of lyophile. This heterogeneity, studied in detail in presence of sucrose, occurred irrespective of cosolute content. Annealing the frozen solution at −30°C for 2 h essentially eliminated the heterogeneity, accompanied by an overall increase in MHH content. From differential scanning calorimetry it was evident that annealing caused mannitol crystallization while XRD revealed the crystallizing phase to be MHH.

Conclusion

The intra-vial heterogeneity and total MHH content in the final lyophile is a complex interplay of formulation composition and processing conditions.

Figure depicting spatial heterogeneity in mannitol hemihydrate content, when mannitol is lyophilized with a cosolute, such as sucrose, trealose or lysozyme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

API:

Active pharmaceutical ingredient

MHH:

Mannitol hemihydrate

RT:

Room temperature

XRD:

X-ray diffractometry

References

  1. Akers M. Parentral preparations. In: Felton L, editor. Remingt. Essentials Pharm. London: The Pharmaceutical Press; 2012. p. 495–533.

    Google Scholar 

  2. Kasper JC, Friess W. The freezing step in lyophilization: Physico-chemical fundamentals, freezing methods and consequences on process performance and quality attributes of biopharmaceuticals. Eur J Pharm Biopharm. 2011;78:248–63.

    Article  CAS  Google Scholar 

  3. Liu J. Physical characterization of pharmaceutical formulations in frozen and freeze-dried solid states: techniques and applications in freeze-drying development. Pharm Dev Technol. 2006;11:3–28.

    Article  CAS  Google Scholar 

  4. Randolph TW, Searles JA. Freezing and annealing phenomena in lyophilization: effect upon primary drying rate, morphology, and heterogeneity. Am Pharm Rev. 2002;5:40–7.

    CAS  Google Scholar 

  5. Liu J, Viverette T, Virgin M, Anderson M, Dalal P. A study of the impact of freezing on the lyophilization of a concentrated formulation with a high fill depth. Pharm Dev Technol. 2005;10:261–72.

    Article  CAS  Google Scholar 

  6. Nakagawa K, Hottot A, Vessot S, Andrieu J. Influence of controlled nucleation by ultrasounds on ice morphology of frozen formulations for pharmaceutical proteins freeze-drying. Chem Eng Process Process Intensif. 2006;45:783–91.

    Article  CAS  Google Scholar 

  7. Patapoff TW, Overcashier DE. The importance of freezing on Lyophilization cycle development. BioPharm. 2002;15:16–21.

    Google Scholar 

  8. Oddone I, Van Bockstal PJ, De Beer T, Pisano R. Impact of vacuum-induced surface freezing on inter- and intra-vial heterogeneity. Eur J Pharm Biopharm. 2016;103:167–78.

    Article  CAS  Google Scholar 

  9. Pikal MJ, Shah S. Intravial distribution of moisture during the secondary drying stage of freeze drying. PDA J Pharm Sci Technol. 1997;51:17–24.

    CAS  PubMed  Google Scholar 

  10. Nakagawa K, Murakami W, Hatanaka T. Redistribution of protein biological activity in a freeze-dried cake. Dry Technol. 2013;31:102–11.

    Article  CAS  Google Scholar 

  11. Nail SL, Jiang S, Chongprasert S, Knopp SA. Fundamentals of freeze-drying. Pharm Biotechnol. 2002;14:281–360.

    Article  CAS  Google Scholar 

  12. Kim AI, Akers MJ, Nail SL. The physical state of mannitol after freeze-drying: effects of mannitol concentration, freezing rate, and a noncrystallizing cosolute. J Pharm Sci. 1998;87:931–5.

    Article  CAS  Google Scholar 

  13. Lueckel B, Bodmer D, Helk B, Leuenberger H. Formulations of sugars with amino acids or mannitol - influence of concentration ratio on the properties of the freeze-concentrate and the lyophilizate. Pharm Dev Technol. 1998;3:325–36.

    Article  CAS  Google Scholar 

  14. Cavatur RK, Vemuri NM, Pyne A, Chrzan Z, Toledo-Velasquez D, Suryanarayanan R. Crystallization behavior of mannitol in frozen aqueous solutions. Pharm Res. 2002;19:894–900.

    Article  CAS  Google Scholar 

  15. Grohganz H, Lee YY, Rantanen J, Yang M. The influence of lysozyme on mannitol polymorphism in freeze-dried and spray-dried formulations depends on the selection of the drying process. Int J Pharm. 2013;447:224–30.

    Article  CAS  Google Scholar 

  16. Cannon AJ, Trappler EH. The influence of lyophilization on the polymorphic behavior of mannitol. PDA J Pharm Sci Technol. 2000;54:13–22.

    CAS  PubMed  Google Scholar 

  17. Izutsu K, Yoshioka S, Terao T. Decreased protein-stabilizing effects of cryoprotectants due to crystallization. Pharm Res. 1993;10:1232–7.

    Article  CAS  Google Scholar 

  18. Yu L, Milton N, Groleau EG, Mishra DS, Vansickle RE. Existence of a mannitol hydrate during freeze-drying and practical implications. J Pharm Sci. 1999;88:196–8.

    Article  CAS  Google Scholar 

  19. Mehta M, Bhardwaj SP, Suryanarayanan R. Controlling the physical form of mannitol in freeze-dried systems. Eur J Pharm Biopharm. 2013;85:207–13.

    Article  CAS  Google Scholar 

  20. Srinivasan JM, Wegiel LA, Hardwick LM, Nail SL. The influence of mannitol hemihydrate on the secondary drying dynamics of a protein formulation: a case study. J Pharm Sci. 2017;106:3583–90.

    Article  CAS  Google Scholar 

  21. Cao W, Xie Y, Krishnan S, Lin H, Ricci M. Influence of process conditions on the crystallization and transition of metastable mannitol forms in protein formulations during lyophilization. Pharm Res. 2013;30:131–9.

    Article  CAS  Google Scholar 

  22. Chongprasert S, Griesser UJ, Bottorff AT, Williams NA, Byrn SR, Nail SL. Effects of freeze-dry processing conditions on the crystallization of pentamidine isethionate. J Pharm Sci. 1998;87:1155–60.

    Article  CAS  Google Scholar 

  23. Hawe A, Frieß W. Impact of freezing procedure and annealing on the physico-chemical properties and the formation of mannitol hydrate in mannitol-sucrose-NaCl formulations. Eur J Pharm Biopharm. 2006;64:316–25.

    Article  CAS  Google Scholar 

  24. Liao X, Krishnamurthy R, Suryanarayanan R. Influence of processing conditions on the physical state of mannitol--implications in freeze-drying. Pharm Res. 2007;24:370–6.

    Article  CAS  Google Scholar 

  25. Nakagawa K, Murakami W, Andrieu J, Vessot S. Freezing step controls the mannitol phase composition heterogeneity. Chem Eng Res Des. 2009;87:1017–27.

    Article  CAS  Google Scholar 

  26. Német Z, Sztatisz J, Demeter Á. Polymorph transitions of bicalutamide: a remarkable example of mechanical activation. J Pharm Sci. 2008;97:3222–32.

    Article  Google Scholar 

  27. Courbion G, Ferey G. Na2Ca3Al2F14: a new example of a structure with “independent F-”-a new method of comparison between fluorides and oxides of different formula. J Solid State Chem. 1988;76:426–31.

    Article  CAS  Google Scholar 

  28. Toby BH, Von Dreele RB. GSAS-II: the genesis of a modern open-source all purpose crystallography software package. J Appl Crystallogr. 2013;46:544–9.

    Article  CAS  Google Scholar 

  29. Burger A, Henck JO, Hetz S, Rollinger JM, Weissnicht AA, Stöttner H. Energy/temperature diagram and compression behavior of the polymorphs of D-mannitol. J Pharm Sci. 2000;89:457–68.

    Article  CAS  Google Scholar 

  30. Johnson RE, Kirchhoff CF, Gaud HT. Mannitol–sucrose mixtures—versatile formulations for protein lyophilization. J Pharm Sci. 2002;91:914–22.

    Article  CAS  Google Scholar 

  31. Izutsu K, Kojima S. Excipient crystallinity and its protein-structure-stabilizing effect during freeze-drying. J Pharm Pharmacol. 2002;54:1033–9.

    Article  CAS  Google Scholar 

  32. Larsen H, Trnka H, Grohganz H. Formation of mannitol hemihydrate in freeze-dried proteinformulations—a design of experiment approach. Int J Pharm. 2014;460:45–52.

    Article  Google Scholar 

  33. Her LM, Nail SL. Measurement of glass transition temperatures of freeze-concentrated solutes by differential scanning calorimetry. Pharm Res. 1994;11:54–9.

    Article  CAS  Google Scholar 

  34. Liao X, Krishnamurthy R, Suryanarayanan R. Influence of the active pharmaceutical ingredient concentration on the physical state of mannitol-implications in freeze-drying. Pharm Res. 2005;22:1978–85.

    Article  CAS  Google Scholar 

  35. Tang X, Pikal MJ. Design of freeze-drying processes for pharmaceuticals: practical advice. Pharm Res. 2004;21:191–200.

    Article  CAS  Google Scholar 

  36. Williams NA, Dean T. Vial breakage by frozen mannitol solutions: correlation with thermal characteristics and effect of stereoisomerism, additives, and vial configuration. J Parenter Sci Technol. 1991;45:94–100.

    CAS  PubMed  Google Scholar 

  37. Cao W, Mao C, Chen W, Lin H, Krishnan S, Cauchon N. Differentiation and quantitative determination of surface and hydrate water in lyophilized mannitol using NIR spectroscopy. J Pharm Sci. 2006;95:2077–86.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

The project was partially supported by the William and Mildred Peters endowment fund. Use of the Advanced Photon Source was supported by U.S. Department of Energy, Office of Science, Office of Basic Energy Science, under Contract No. DE-AC02-06CH11357. We thank Dr. Wenqian Xu and Dr. Andrey Yakovenko for their help during the beamline experiments. Parts of this work were carried out in the Characterization Facility, University of Minnesota, which receives partial support from NSF through the MRSEC program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Suryanarayanan.

Electronic supplementary material

ESM 1

(DOCX 1507 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thakral, S., Koranne, S. & Suryanarayanan, R. Intra-Vial Heterogeneity in Physical Form of Mannitol in Colyophilized Binary Systems. Pharm Res 35, 214 (2018). https://doi.org/10.1007/s11095-018-2499-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11095-018-2499-x

KEY WORDS

Navigation