Skip to main content

Advertisement

Log in

Molecular Targets of the Hydrophobic Block of Pluronics in Cells: a Photo Affinity Labelling Approach

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Pluronics are known as inhibitors of multidrug resistance thus making tumor cells sensitive to therapeutic doses of drugs. The purpose of our study consists in revealing molecular targets of the hydrophobic poly(propylene oxide) block of pluronics in living cells and the dependence of the polymers chemosensitizing efficiency upon targeting.

Methods

A photo sensitive tracer was attached to the hydrophobic poly(propylene oxide) block of 3H-labeled tert-Bu-EO-PO copolymer. The conjugate was used for treatment cells in culture. We searched for its complexes with cellular lipids or proteins using RP TLC and SDS-electrophoresis, respectively. The chemosensitizing efficiency of pluronics was evaluated by their least concentrations sufficient for MDR reversion (CMDR).

Results

The poly(propylene oxide) block inserts in the lipid core of plasma membrane. No preferential binding of the conjugate with any cellular protein, particularly P-gp, has been detected. FITC-labeled pluronic L61 bound to alcohol insoluble cellular targets did not participate in MDR reversion. CMDR values of 13 block copolymers have been determined. These values inversely correlated with the polymers affinity toward lipids and the ability to accelerate flip-flop.

Conclusion

Insertion of the hydrophobic poly(propylene oxide) block of amphiphiles in the lipid core of plasma membrane and acceleration of flip-flop of lipids underlie the mechanism of MDR reversion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

BSA:

Bovine serum albumin

CMDR :

The least polymer concentration sufficient for the maximum possible MDR inhibition

DMEM:

Dulbecco’s modified Eagle’s medium

DOX:

Doxorubicin

GPC:

Gel permeation chromatography

EO:

Ethylene oxide

FITC:

Fluorescein isothiocyanate

PAL:

Photo affinity labeling

PBS:

Dulbecco’s phosphate-buffered saline

PO:

Propylene oxide

PPO:

Poly(propylene oxide)

R18:

Octadecyl Rhodamine B chloride

REP:

Tert-butoxy-poly(ethylene oxide)-b-poly(propylene oxide) block copolymer

RP TLC:

Reverse phase TLC

TFMD:

p-1-trifluoromethyldiazirinyl benzoic acid

TLC:

Thin layer chromatography

References

  1. Alakhova DY, Kabanov AV. Pluronics and MDR reversal: an update. Mol Pharm. 2014;11(8):2566–78. https://doi.org/10.1021/mp500298q.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Paradis R, Noel C, Pagé M. Use of Pluronic micelles to overcome multidrug-resistance. Int J Oncol. 1994;5:1305–8.

    CAS  PubMed  Google Scholar 

  3. Alakhov VY, Moskaleva EY, Batrakova EV, Kabanov AV. Hypersensitization of multidrug resistant human ovarian carcinoma cells by Pluronic P85 block copolymer. Bioconjug Chem. 1996;7:209–16.

    Article  CAS  PubMed  Google Scholar 

  4. Batrakova EV, Li S, Elmquist WF, Miller DW, Alakhov VY, Kabanov AV. Mechanism of sensitization of MDR cancer cells by Pluronic block copolymers: Selective energy depletion. Br J Cancer. 2001;85:1987–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Venne A, Li S, Mandeville R, Kabanov A, Alakhov V. Hypersensitizing effect of Pluronic L61 on cytotoxic activity, transport, and subcellular distribution of doxorubicin in multiple drug-resistant cells. Cancer Res. 1996;56:3626–9.

    CAS  PubMed  Google Scholar 

  6. Batrakova EV, Li S, Li Y, Alakhov VY, Kabanov AV. Effect of Pluronic P85 on ATPase activity of drug efflux transporters. Pharm Res. 2004;21:2226–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Alakhova DY, Rapoport NY, Batrakova EV, Timoshin AA, Li S, Nicholls D, et al. Differential metabolic responses to pluronic in MDR and non-MDR cells: a novel pathway for chemosensitization of drug resistant cancers. J Control Release. 2011;142(1):89–100.

    Article  Google Scholar 

  8. Batrakova EV, Li S, Vinogradov SV, Alakhov VY, Miller DW, Kabanov AV. Mechanism of Pluronic effect on P-glycoprotein efflux system in blood brain barrier: contribution of energy depletion and membrane fluidization. J Pharm Exp Ther. 2001;299:483–93.

    CAS  Google Scholar 

  9. Ferte J. Analysis of the tangled relationships between P-glycoprotein-mediated multidrug resistance and the lipid phase of the cell membrane. Eur J Biochem. 2000;267:277–94.

    Article  CAS  PubMed  Google Scholar 

  10. Kabanov AV, Batrakova EV, Alakhov VY. Pluronic block copolymers for overcoming drug resistance in cancer. Adv Drug Deliv Rev. 2002;54:759–79.

    Article  CAS  PubMed  Google Scholar 

  11. Firestone MA, Wolf AC, Seifert S. Small-angle X-ray scattering study of the interaction of poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) triblock copolymers with lipid bilayers. Biomacromolecules. 2003;4:1539–49.

    Article  CAS  PubMed  Google Scholar 

  12. Firestone MA, Seifert S. Interaction of nonionic PEO-PPO diblock copolymers with lipid bilayers. Biomacromolecules. 2005;6:2678–87.

    Article  CAS  PubMed  Google Scholar 

  13. Demina T, Grozdova I, Krylova O, Zhirnov A, Istratov V, Frey H, et al. Relationship between the structure of amphiphilic copolymers and their ability to disturb lipid bilayers. Biochemistry. 2005;44(2):4042–54.

    Article  CAS  PubMed  Google Scholar 

  14. Johnsson M, Silvander M, Karlsson G, Edwards K. Effect of PEO-PPO-PEO triblock copolymers on structure and stability of phosphatidylcholine liposomes. Langmuir. 1999;15:6314–25.

    Article  CAS  Google Scholar 

  15. Ercan NI, Stroeve P, Tringe JW, Faller R. Understanding the interaction of pluronics L61 and L64 with a DOPC lipid bilayer: an atomistic molecular dynamics study. Langmuir. 2016;32:10026–33.

    Article  CAS  Google Scholar 

  16. Grunbeck A, Sakmar TP. Probing G protein-coupled receptor-ligand interactions with targeted photoactivatable cross-linkers. Biochemistry. 2013;52:8625–32. https://doi.org/10.1021/bi401300y.

    Article  CAS  PubMed  Google Scholar 

  17. Xu Y, Uddin N, Wagner GK. Covalent probes for carbohydrate-active enzymes: From glycosidases to glycosyltransferases. Methods Enzymol. 2018;598:237–65. https://doi.org/10.1016/bs.mie.2017.06.016.

    Article  PubMed  Google Scholar 

  18. Ranucci E, Ferruti P. A new synthetic method for amino-terminated poly(ethyleneglycol) derivatives. Synth Commun. 1990;20:2951–7. https://doi.org/10.1080/00397919008051511.

    Article  CAS  Google Scholar 

  19. Sims GEC, Snape TJ. A method for the estimation of polyethylene glycol in plasma protein fractions. Anal Biochem. 1980;107:60–3.

    Article  CAS  PubMed  Google Scholar 

  20. Habeeb AF. Determination of free amino groups in proteins by trinitrobenzenesulfonic acid. Anal Biochem. 1966;14:328–36.

    Article  CAS  PubMed  Google Scholar 

  21. Badun GA, Chernysheva MG, Ksenofontov AL. Increase in the specific radioactivity of tritium-labeled compounds obtained by tritium thermal activation method. Radiochim Acta. 2012;100:401–8. https://doi.org/10.1524/ract.2012.1926.

    Article  CAS  Google Scholar 

  22. Voges R, Heys JR, Moenius T. Preparation of compounds labeled with tritium and carbon-14. Wiley; 2009. p. 682.

  23. Demina T, Budkina O, Badun G, Melik-Nubarov NS, Frey H, Müller SS, et al. Cytotoxicity and chemosensitizing activity of amphiphilic poly(glycerol) −poly(alkylene oxide) block copolymers. Biomacromolecules. 2014;15:2672–81.

    Article  CAS  PubMed  Google Scholar 

  24. Song Z, Zhang Q. Fluorous aryldiazirine photoaffinity labeling reagents. Org Lett. 2009;11:4882–5. https://doi.org/10.1021/ol901955y.

    Article  CAS  PubMed  Google Scholar 

  25. Bonner WM, Laskey RA. A film detection method for tritium-labeled proteins and nucleic acids in polyacrylamide gels. Eur J Biochem. 1974;46:83–8.

    Article  CAS  PubMed  Google Scholar 

  26. Folch J, Lees M. Sloane Stanley GH. A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem. 1957;226:497–509.

    CAS  PubMed  Google Scholar 

  27. Mikulin VP. Photography guide book. Moscow; ed Art; 1960. p. 77.

  28. Nam EV, Zhirnov AE, Litmanovich EA, Melik-Nubarov NS, Grozdova ID. The effect of modification with fluorescent groups on the physicochemical characteristics of poly(alkylene oxides). Polymer Sci (Rus) Ser A. 2010;52:907–13.

    Article  Google Scholar 

  29. Harrigan PR, Wong KF, Redelmeier TE, Wheeler JJ, Cullis PR. Accumulation of doxorubicin and other lipophilic amines into large unilamellar vesicles in response to transmembrane pH gradients. Biochim Biophys Acta. 1993;1149:329–38.

    Article  CAS  PubMed  Google Scholar 

  30. Beck-Sickinger AG, Wieland HA, Brunner J. Synthesis, receptor binding, and crosslinking of photoactive analogues of neuropeptide Y. J Recept Signal Transduct Res. 1995;15:473–85.

    Article  CAS  PubMed  Google Scholar 

  31. Ridder AN, Spelbrink RE, Demmers JA, Rijkers DT, Liskamp RM, Brunner J, et al. Photo-crosslinking analysis of preferential interactions between a transmembrane peptide and matching lipids. Biochemistry. 2004;43:4482–9.

    Article  CAS  PubMed  Google Scholar 

  32. Kirmse W. Carbene chemistry. New York – London: Academic Press; 1964. p. 25.

    Google Scholar 

  33. Budkina OA, Demina TV, Dorodnich TY, Melik-Nubarov NS, Grozdova ID. Cytotoxicity of nonionic amphiphilic copolymers. Polym Sci Ser A. 2012;54:707–17.

    Article  CAS  Google Scholar 

  34. Batrakova E, Lee S, Li S, Venne A, Alakhov V, Kabanov A. Fundamental relationship between the composition of Pluronic block copolymers and their hypersensitization effect in MDR cancer cells. Pharm Res, 1373. 1999;16(9):–1379.

  35. Grozdova ID, Badun GA, Chernysheva MG, Orlov VN, Romanyuk AV, Melik-Nubarov NS. Increase in the length of poly(ethylene oxide) blocks in amphiphilic copolymers facilitates their cellular uptake. J Appl Polym Sci. 2017;134:45492. https://doi.org/10.1002/APP.45492.

    Article  Google Scholar 

  36. L’Annunziata MF. Handbook of radioactivity analysis. Academic Press; 2012. p. 1213.

  37. Terlouw O, Tanriseven O, Russel FG, Masereeuw R. Metabolite anion carriers mediate the uptake of the anionic drug fluorescein in renal cortical mitochondria. J Pharmacol Exp Ther. 2000;292:968–73.

    CAS  PubMed  Google Scholar 

  38. Masereeuw R, van den Bergh EJ, Bindels RJ, Russel FG. Characterization of fluorescein transport in isolated proximal tubular cells of the rat: evidence for mitochondrial accumulation. J Pharmacol Exp Ther. 1994;269:1261–7.

    CAS  PubMed  Google Scholar 

  39. Denecker G, Dooms H, Van Loo G, Vercammen D, Grooten J, Fiers W, et al. Phosphatidyl serine exposure during apoptosis precedes release of cytochrome c and decrease in mitochondrial transmembrane potential. J Biol Chem. 2002;277:35869–79.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

The authors express their gratitude to Prof. G. A. Korshunova for her generous gift of p-1-trifluorometyldiazirinyl benzoic acid (TFMD) and to the Shared Research Center of MSU supported by the Russian Ministry of Education and Science for the equipment provided.

Funding

This work was partially supported by grant RFBR #18-03-01234.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Grozdova.

Electronic supplementary material

ESM 1

(DOC 1211 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhirnov, A., Nam, E., Badun, G. et al. Molecular Targets of the Hydrophobic Block of Pluronics in Cells: a Photo Affinity Labelling Approach. Pharm Res 35, 205 (2018). https://doi.org/10.1007/s11095-018-2484-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11095-018-2484-4

KEY WORDS

Navigation