Skip to main content
Log in

Formulation of High-Performance Dry Powder Aerosols for Pulmonary Protein Delivery

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Pulmonary delivery of biologics is of great interest, as it can be used for the local treatment of respiratory diseases or as a route to systemic drug delivery. To reach the full potential of inhaled biologics, a formulation platform capable of producing high performance aerosols without altering protein native structure is required.

Methods

A formulation strategy using Particle Replication in Non-wetting Templates (PRINT) was developed to produce protein dry powders with precisely engineered particle morphology. Stability of the incorporated proteins was characterized and the aerosol properties of the protein dry powders was evaluated in vitro with an Andersen Cascade Impactor (ACI).

Results

Model proteins bovine serum albumin (BSA) and lysozyme were micromolded into 1 μm cylinders composed of more than 80% protein, by mass. Extensive characterization of the incorporated proteins found no evidence of alteration of native structures. The BSA formulation produced a mass median aerodynamic diameter (MMAD) of 1.77 μm ± 0.06 and a geometric standard deviation (GSD) of 1.51 ± 0.06 while the lysozyme formulation had an MMAD of 1.83 μm ± 0.12 and a GSD of 1.44 ± 0.03.

Conclusion

Protein dry powders manufactured with PRINT could enable high-performance delivery of protein therapeutics to the lungs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

ACI:

Andersen cascade impactor

BSA:

Bovine serum albumin

CD:

Circular dichroism

DPI:

Dry powder inhaler

ED:

Emitted dose

ELSD:

Evaporative light scattering detector

FDKP:

Fumaryl diketopiperazine

FPF:

Fine particle fraction

GSD:

Geometric standard deviation

HDODA:

Hexanediol diacrylate

HPMC:

Hydroxypropyl methylcellulose

MDI:

Metered dose inhaler

MMAD:

Mass median aerodynamic diameter

PEG:

Polyethylene glycol

PET:

Poly(ethylene terephthalate)

PPS:

Pre-particle solution

PRINT:

Particle replication in non-wetting templates

PVPVA:

Poly(1-vinylpyrrolidone-co-vinyl acetate)

SD:

Spray drying

SFD:

Spray freeze drying

References

  1. Bäckman P, Adelmann H, Petersson G, Jones CB. Advances in inhaled technologies: understanding the therapeutic challenge, predicting clinical performance, and designing the optimal inhaled product. Clin Pharmacol Ther. 2014;95(5):509–20.

    Article  PubMed  CAS  Google Scholar 

  2. Hoe S, Boraey MA, Ivey JW, Finlay WH, Vehring R. Manufacturing and device options for the delivery of biotherapeutics. J Aerosol Med Pulm Drug Deliv. 2014;27:1–14.

    Article  Google Scholar 

  3. Weers JG, Miller DP. Formulation design of dry Powders for inhalation. J Pharm Sci. 2015;104(10):3259–88.

    Article  PubMed  CAS  Google Scholar 

  4. Claus S, Weiler C, Schiewe J, Friess W. How can we bring high drug doses to the lung? Eur J Pharm Biopharm. 2014;86(1):1–6.

    Article  PubMed  CAS  Google Scholar 

  5. Patton JS. Mechanisms of macromolecule absorption by the lungs. Adv Drug Deliv Rev. 1996;19(1):3–36.

    Article  CAS  Google Scholar 

  6. Patton JS. The lungs as a portal of entry for systemic drug delivery. Proc Am Thorac Soc. 2004;1(4):338–44.

    Article  PubMed  CAS  Google Scholar 

  7. Labiris NR, Dolovich MB. Pulmonary drug delivery. Part II: the role of inhalant delivery devices and drug formulations in therapeutic effectiveness of aerosolized medications. Br J Clin Pharmacol. 2003;56(6):600–12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Maltesen MJ, van de Weert M. Drying methods for protein pharmaceuticals. Drug Discov Today Technol. 2008;5(2–3):e81–8.

    Article  PubMed  Google Scholar 

  9. Longest PW, Tian G, Li X, Son YJ, Hindle M. Performance of combination drug and hygroscopic excipient submicrometer particles from a Softmist inhaler in a characteristic model of the airways. Ann Biomed Eng. 2012;40(12):1–15.

    Article  Google Scholar 

  10. Borgström L, Olsson B, Thorsson L. Degree of throat deposition can explain the variability in lung deposition of inhaled drugs. J Aerosol Med. 2006;19(4):473–83.

    Article  PubMed  Google Scholar 

  11. de Boer AH, Hagedoorn P, Hoppentocht M, Buttini F, Grasmeijer F, Frijlink HW. Dry powder inhalation: past, present and future. Expert Opin Drug Deliv. 2017;14(4):499–512.

    Article  PubMed  CAS  Google Scholar 

  12. Chow AHL, Tong HHY, Chattopadhyay P, Shekunov BY. Particle engineering for pulmonary drug delivery. Pharm Res. 2007;24(3):411–37.

    Article  PubMed  CAS  Google Scholar 

  13. Vehring R. Pharmaceutical particle engineering via spray drying. Pharm Res. 2008;25(5):999–1022.

    Article  PubMed  CAS  Google Scholar 

  14. Dolovich MB, Dhand R. Aerosol drug delivery: developments in device design and clinical use. Lancet. 2011;377(9770):1032–45.

    Article  PubMed  CAS  Google Scholar 

  15. Bekard IB, Asimakis P, Bertolini J, Dunstan DE. The effects of shear flow on protein structure and function. Biopolymers. 2011;95(11):733–45.

    PubMed  CAS  Google Scholar 

  16. Winters MA, Knutson BL, Debenedetti PG, Sparks HG, Przybycien TM, Stevenson CL, et al. Precipitation of proteins in supercritical carbon dioxide. J Pharm Sci. 1996;85(6):586–94.

    Article  PubMed  CAS  Google Scholar 

  17. Potocka E, Cassidy JP, Haworth P, Heuman D, van Marle S, Baughman RA. Pharmacokinetic characterization of the novel pulmonary delivery excipient fumaryl diketopiperazine. J Diabetes Sci Technol. 2010;4(5):1164–73.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Cassidy JP, Amin N, Marino M, Gotfried M, Meyer T, Sommerer K, et al. Insulin lung deposition and clearance following technosphere ® insulin inhalation powder administration. Pharm Res. 2011;28(9):2157–64.

    Article  PubMed  CAS  Google Scholar 

  19. Bromberg L, Rashba-Step J, Scott T. Insulin particle formation in supersaturated aqueous solutions of poly(ethylene glycol). Biophys J. 2005;89(5):3424–33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Garcia A, Mack P, Williams S, Fromen C, Shen T, Tully J, et al. Microfabricated engineered particle Systems for Respiratory Drug Delivery and Other Pharmaceutical Applications. J Drug Deliv. 2012;2012:1–10.

    Article  CAS  Google Scholar 

  21. Mack P, Horvath K, Tully J, Maynor B. Particle engineering for inhalation formulation and delivery of biotherapeutics. Inhalation. 2012;6:16–20.

    Google Scholar 

  22. Fromen CA, Shen TW, Larus AE, Mack P, Maynor BW, Luft JC, et al. Synthesis and characterization of monodisperse uniformly shaped respirable aerosols. AICHE J. 2013;59(9):3184–94.

    Article  CAS  Google Scholar 

  23. Rahhal TB, Fromen CA, Wilson EM, Kai MP, Shen TW, Luft JC, et al. Pulmonary delivery of Butyrylcholinesterase as a model protein to the lung. Mol Pharm. 2016;13(5):1626–35.

    Article  PubMed  CAS  Google Scholar 

  24. Khodabandehlou K, Kumbhar AS, Habibi S, Pandya AA, Luft JC, Khan SA, et al. Silylated precision particles for controlled release of proteins. ACS Appl Mater Interfaces. 2015;7(10):5756–67.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Xu J, Wang J, Luft JC, Tian S, Owens G, Pandya AA, et al. Rendering protein-based particles transiently insoluble for therapeutic applications. J Am Chem Soc. 2012 [cited 2014 Jul 9];134(21):8774–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Bantan-Polak T, Kassai M, Grant KB. A comparison of Fluorescamine and Naphthalene-2,3-dicarboxaldehyde Fluorogenic reagents for microplate-based detection of amino acids. Anal Biochem. 2001;297(2):128–36.

    Article  PubMed  CAS  Google Scholar 

  27. Ameri M, Maa Y-F. Spray drying of biopharmaceuticals: stability and process considerations. Dry Technol. 2006;24(6):763–8.

    Article  CAS  Google Scholar 

  28. Chan HK. Dry powder aerosol drug delivery-opportunities for colloid and surface scientists. Colloids Surf A Physicochem Eng Asp. 2006;284–285:50–5.

    Article  CAS  Google Scholar 

  29. Frokjaer S, Otzen DE. Protein drug stability: a formulation challenge. Nat Rev Drug Discov. 2005;4(4):298–306.

    Article  PubMed  CAS  Google Scholar 

  30. Mumenthaler M, Hsu CC, Pearlman R. Feasibility study on spray-drying protein pharmaceuticals: recombinant human growth hormone and tissue-type plasminogen activator [internet]. Pharm Res. 1994;11:12–20.

    Article  PubMed  CAS  Google Scholar 

  31. Costantino HR, Firouzabadian L, Hogeland K, Wu C, Beganski C, Carrasquillo KG, et al. Protein spray-freeze drying. Effect of atomization conditions on particle size and stability. Pharm Res. 2000;17(11):1374–83.

    Article  PubMed  CAS  Google Scholar 

  32. Shoyele SA, Sivadas N, Cryan S. The effects of excipients and particle engineering on the biophysical stability and aerosol performance of parathyroid hormone (1-34) prepared as a dry powder for inhalation. AAPS PharmSciTech. 2011;12(1):304–11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Hulse WL, Forbes RT, Bonner MC, Getrost M. Do co-spray dried excipients offer better lysozyme stabilisation than single excipients? Eur J Pharm Sci. 2008;33(3):294–305.

    Article  PubMed  CAS  Google Scholar 

  34. Yu Z, Johnston KP, Williams RO. Spray freezing into liquid versus spray-freeze drying: influence of atomization on protein aggregation and biological activity. Eur J Pharm Sci. 2006;27(1):9–18.

    Article  PubMed  CAS  Google Scholar 

  35. Capelle MAH, Gurny R, Arvinte T. High throughput screening of protein formulation stability: practical considerations. Eur J Pharm Biopharm. 2007;65(2):131–48.

    Article  PubMed  CAS  Google Scholar 

  36. Garidel P, Hegyi M, Bassarab S, Weichel M. A rapid, sensitive and economical assessment of monoclonal antibody conformational stability by intrinsic tryptophan fluorescence spectroscopy. Biotechnol J. 2008;3(9–10):1201–11.

    Article  PubMed  CAS  Google Scholar 

  37. Liao YH, Brown MB, Nazir T, Quader A, Martin GP. Effects of sucrose and trehalose on the preservation of the native structure of spray-dried lysozyme. Pharm Res. 2002;19(12):1847–53.

    Article  PubMed  CAS  Google Scholar 

  38. Xi J, Longest PW. Effects of oral airway geometry characteristics on the diffusional deposition of inhaled nanoparticles. J Biomech Eng. 2008;130(February):11008-1-011008–16.

    Google Scholar 

  39. Behara SRB, Farkas DR, Hindle M, Longest PW. Development of a high efficiency dry powder inhaler: effects of capsule chamber design and inhaler surface modifications. Pharm Res. 2014;31(2):360–72.

    Article  PubMed  CAS  Google Scholar 

  40. Telko MJ, Hickey AJ. Dry powder inhaler formulation. Respir Care. 2005;50(9):1209–27.

    PubMed  Google Scholar 

  41. Crowder TM, Rosati JA, Schroeter JD, Hickey AJ, Martonen TB. Fundamental effects of particle morphology on lung delivery: predictions of stokes’ law and the particular relevance to dry powder inhaler formulation and development. Pharm Res. 2002;19(3):239–45.

    Article  PubMed  CAS  Google Scholar 

  42. Mitchell JP, Nagel MW. Cascade impactors for the size characterization of aerosols from medical inhalers: their uses and limitations. J Aerosol Med. 2003;16(4):341–77.

    Article  PubMed  CAS  Google Scholar 

  43. Finlay WH, Gehmlich MG. Inertial sizing of aerosol inhaled from two dry powder inhalers with realistic breath patterns versus constant flow rates. Int J Pharm. 2000;210(1–2):83–95.

    Article  PubMed  CAS  Google Scholar 

  44. Bosquillon C, Lombry C, Préat V, Vanbever R. Influence of formulation excipients and physical characteristics of inhalation dry powders on their aerosolization performance. J Control Release. 2001;70(3):329–39.

    Article  PubMed  CAS  Google Scholar 

  45. Shur J, Saluja B, Lee S, Tibbatts J, Price R. Effect of device design and formulation on the in vitro comparability for multi-unit dose dry powder inhalers. AAPS J. 2015;17(5):1105–16.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Cicerone MT, Pikal MJ, Qian KK. Stabilization of proteins in solid form. Adv Drug Deliv Rev. 2015;93:14–24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Pilcer G, Amighi K. Formulation strategy and use of excipients in pulmonary drug delivery. Int J Pharm. 2010;392(1–2):1–19.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments and Disclosures

We thank C. Caudill, T. Rahhal, A. Johnson, J. Perry, J. Coffman, C. Bloomquist, and S. Tian for helpful discussions and technical assistance. We acknowledge Liquidia Technologies for providing PRINT molds. We acknowledge core facilities at UNC, including the Chapel Hill Analytical and Nanofabrication Laboratory (CHANL) which is supported by the National Science Foundation (ECCS-1542015) and the Macromolecular Interactions Facility which is supported by the National Institutes of Health (P30CA016086). This work was funded by the DTRA award (HDTRA1–13–1-0045). J.M.D. is a founder and maintains a financial interest in Liquidia Technologies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph M. DeSimone.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wilson, E.M., Luft, J.C. & DeSimone, J.M. Formulation of High-Performance Dry Powder Aerosols for Pulmonary Protein Delivery. Pharm Res 35, 195 (2018). https://doi.org/10.1007/s11095-018-2452-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11095-018-2452-z

Key words

Navigation