Skip to main content

Advertisement

Log in

Characterization of the PEGylated Functional Upstream Domain Peptide (PEG-FUD): a Potent Fibronectin Assembly Inhibitor with Potential as an Anti-Fibrotic Therapeutic

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To develop PEGylated variants of pUR4/FUD (FUD), a fibronectin assembly inhibitor, using 10 kDa, 20 kDa, and 40 kDa PEGs to evaluate their binding affinity and inhibitory potency.

Methods

The FUD peptide was recombinantly expressed, purified, and PEGylated at the N-terminus using 10 kDa, 20 kDa, and 40 kDa methoxy-PEG aldehyde. The PEGylates were purified and fractionated using ion-exchange chromatography. The molecular weight and degree of PEGylation of each conjugate was verified using MALDI-TOF. The binding affinity of each PEG-FUD conjugate was studied using isothermal titration colorimetry (ITC) and their inhibitory potency was characterized by a cell-based matrix assembly in vitro assay.

Results

The 10 kDa, 20 kDa, and 40 kDa PEG-FUD conjugates were synthesized and isolated in good purity as determined by HPLC analysis. Their molecular weight was consistent with attachment of a single PEG molecule to one FUD peptide. The binding affinity (Kd) and the fibronectin fibrillogenesis inhibitory potency (IC50) of all PEG-FUD conjugates remained nanomolar and unaffected by the addition of PEG.

Conclusions

Retention of FUD fibronectin binding activity following PEGylation with three different PEG sizes suggest that PEG-FUD holds promise as an effective anti-fibrotic with therapeutic potential and a candidate for further pharmacokinetic and biodistribution studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

70 K:

70 kDa N-terminal region of fibronectin

ECM:

Extracellular Matrix

FN:

Fibronectin

FNI:

Fibronectin type I domain

FUD:

Functional Upstream Domain

ITC:

Isothermal Titration Calorimetry

MAA:

Matrix Assembly Assay

MALDI-TOF:

Matrix Assisted Laser Desorption/Ionization Time of Flight

PEG:

Polyethylene Glycol

TGF-β:

Transforming Growth Factor β

References

  1. Sottile J, Hocking DC. Fibronectin polymerization regulates the composition and stability of extracellular matrix fibrils and cell-matrix adhesions. Mol Biol Cell. 2002;13(10):3546–59.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Dallas SL, Sivakumar P, Jones CJP, Chen Q, Peters DM, Mosher DF, et al. Fibronectin regulates latent transforming growth factor-β (TGFβ) by controlling matrix assembly of latent TGFβ-binding Protein-1. J Biol Chem. 2005;280(19):18871–80.

    Article  PubMed  CAS  Google Scholar 

  3. Moore C, Shen X-D, Gao F, Busuttil RW, Coito AJ. Fibronectin-α4β1 integrin interactions regulate Metalloproteinase-9 expression in Steatotic liver ischemia and reperfusion injury. Am J Pathol. 2007;170(2):567–77.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Maurer LM, Ma W, Mosher DF. Dynamic structure of plasma fibronectin. Crit Rev Biochem Mol Biol. 2016;51(4):213–27.

    Article  PubMed Central  CAS  Google Scholar 

  5. Singh P, Carraher C, Schwarzbauer JE. Assembly of fibronectin extracellular matrix. Annu Rev Cell Dev Biol. 2010;26:397–419.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Schwarzbauer JE. Identification of the fibronectin sequences required for assembly of a fibrillar matrix. J Cell Biol. 1991;113(6):1463–73.

    Article  PubMed  CAS  Google Scholar 

  7. McKeown-Longo PJ, Mosher DF. Interaction of the 70,000-Mol-wt amino-terminal fragment of fibronectin with the matrix-assembly receptor of fibroblasts. J Cell Biol. 1985;100(2):364–74.

    Article  PubMed  CAS  Google Scholar 

  8. Tiwari A, Kumar R, Ram J, Sharma M, Luthra-Guptasarma M. Control of fibrotic changes through the synergistic effects of anti-fibronectin antibody and an RGDS-tagged form of the same antibody. Sci Rep. 2016;6:30872.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Maurer LM, Tomasini-Johansson BR, Ma W, Annis DS, Eickstaedt NL, Ensenberger MG, et al. Extended binding site on fibronectin for the functional upstream domain of protein F1 of Streptococcus pyogenes. J Biol Chem. 2010;285(52):41087–99.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Tomasini-Johansson BR, Kaufman NR, Ensenberger MG, Ozeri V, Hanski E, Mosher DF. A 49-residue peptide from Adhesin F1 of Streptococcus pyogenes inhibits fibronectin matrix assembly. J Biol Chem. 2001;276(26):23430–9.

    Article  PubMed  CAS  Google Scholar 

  11. Altrock E, Sens C, Wuerfel C, Vasel M, Kawelke N, Dooley S, et al. Inhibition of fibronectin deposition improves experimental liver fibrosis. J Hepatol. 2015;62(3):625–33.

    Article  PubMed  CAS  Google Scholar 

  12. Weinstock MT, Francis JN, Redman JS, Kay MS. Protease-resistant peptide design—empowering nature's fragile warriors against HIV. Pept Sci. 2012;98(5):431–42.

    Article  CAS  Google Scholar 

  13. McGregor DP. Discovering and improving novel peptide therapeutics. Curr Opin Pharmacol. 2008;8(5):616–9.

    Article  PubMed  CAS  Google Scholar 

  14. Fishburn CS. The pharmacology of PEGylation: balancing PD with PK to generate novel therapeutics. J Pharm Sci. 2008;97(10):4167–83.

    Article  PubMed  CAS  Google Scholar 

  15. Tang L, Persky AM, Hochhaus G, Meibohm B. Pharmacokinetic aspects of biotechnology products. J Pharm Sci. 2004;93(9):2184–204.

    Article  PubMed  CAS  Google Scholar 

  16. Li W, Zhan P, De Clercq E, Lou H, Liu X. Current drug research on PEGylation with small molecular agents. Prog Polym Sci. 2013;38(3):421–44.

    Article  CAS  Google Scholar 

  17. Tomasini-Johansson BR, Johnson IA, Hoffmann FM, Mosher DF. Quantitative microtiter fibronectin fibrillogenesis assay: use in high throughput screening for identification of inhibitor compounds. Matrix Biol. 2012;31(6):360–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Filla MS, Dimeo KD, Tong T, Peters DM. Disruption of fibronectin matrix affects type IV collagen, fibrillin and laminin deposition into extracellular matrix of human trabecular meshwork (HTM) cells. Exp Eye Res. 2017;165:7–19.

    Article  PubMed  CAS  Google Scholar 

  19. Lee S-H, Lee S, Youn YS, Na DH, Chae SY, Byun Y, et al. Synthesis, characterization, and pharmacokinetic studies of PEGylated glucagon-like Peptide-1. Bioconjug Chem. 2005;16(2):377–82.

    Article  PubMed  CAS  Google Scholar 

  20. Kinstler OB, Brems DN, Lauren SL, Paige AG, Hamburger JB, Characterization TMJ. Stability of N-terminally PEGylated rhG-CSF. Pharm Res. 1996;13(7):996–1002.

    Article  PubMed  CAS  Google Scholar 

  21. Guerra PI, Acklin C, Kosky AA, Davis JM, Treuheit MJ, Brems DN. PEGylation prevents the N-terminal degradation of megakaryocyte growth and development factor. Pharm Res. 1998;15(12):1822–7.

    Article  PubMed  CAS  Google Scholar 

  22. Kinstler O, Molineux G, Treuheit M, Ladd D, Gegg C. Mono-N-terminal poly(ethylene glycol)–protein conjugates. Adv Drug Deliv Rev. 2002;54(4):477–85.

    Article  PubMed  CAS  Google Scholar 

  23. Pasut G, Veronese FM. State of the art in PEGylation: the great versatility achieved after forty years of research. J Control Release. 2012;161(2):461–72.

    Article  PubMed  CAS  Google Scholar 

  24. Harris JM, Chess RB. Effect of pegylation on pharmaceuticals. Nat Rev Drug Discov. 2003;2(3):214–21.

    Article  PubMed  CAS  Google Scholar 

  25. Yamaoka T, Tabata Y, Ikada Y. Distribution and tissue uptake of poly(ethylene glycol) with different molecular weights after intravenous administration to mice. J Pharm Sci. 1994;83(4):601–6.

    Article  PubMed  CAS  Google Scholar 

  26. Rudmann DG, Alston JT, Hanson JC, Heidel S. High molecular weight polyethylene glycol cellular distribution and PEG-associated cytoplasmic Vacuolation is molecular weight dependent and does not require conjugation to proteins. Toxicol Pathol. 2013;41(7):970–83.

    Article  PubMed  CAS  Google Scholar 

  27. Wang Y-S, Youngster S, Grace M, Bausch J, Bordens R, Wyss DF. Structural and biological characterization of pegylated recombinant interferon alpha-2b and its therapeutic implications. Adv Drug Deliv Rev. 2002;54(4):547–70.

    Article  PubMed  CAS  Google Scholar 

  28. Bailon P, Palleroni A, Schaffer CA, Spence CL, Fung W-J, Porter JE, et al. Rational Design of a Potent, long-lasting form of interferon: a 40 kDa branched polyethylene glycol-conjugated interferon α-2a for the treatment of hepatitis C. Bioconjug Chem. 2001;12(2):195–202.

    Article  PubMed  CAS  Google Scholar 

  29. Ross RJM, Leung KC, Maamra M, Bennett W, Doyle N, Waters MJ, et al. Binding and functional studies with the growth hormone receptor antagonist, B2036-PEG (Pegvisomant), reveal effects of Pegylation and evidence that it binds to a receptor Dimer1. J Clin Endocrinol Metab. 2001;86(4):1716–23.

    PubMed  CAS  Google Scholar 

  30. Bábíčková J, Klinkhammer BM, Buhl EM, Djudjaj S, Hoss M, Heymann F, et al. Regardless of etiology, progressive renal disease causes ultrastructural and functional alterations of peritubular capillaries. Kidney Int. 2017;91(1):70–85.

    Article  PubMed  CAS  Google Scholar 

  31. Ehling J, Bábíčková J, Gremse F, Klinkhammer BM, Baetke S, Knuechel R, et al. Quantitative micro-computed tomography imaging of vascular dysfunction in progressive kidney diseases. J Am Soc Nephrol. 2016;27(2):520–32.

    Article  PubMed  CAS  Google Scholar 

  32. MOSSMAN BT, CHURG A. Mechanisms in the pathogenesis of asbestosis and silicosis. Am J Respir Crit Care Med. 1998;157(5):1666–80.

    Article  PubMed  CAS  Google Scholar 

  33. Coughlin MK. Radial scars in benign breast-biopsy specimens and the risk of breast Cancer. AORN J. 2000;71(1):240–2.

    Article  Google Scholar 

  34. Kenny HA, Chiang C-Y, White EA, Schryver EM, Habis M, Romero IL, et al. Mesothelial cells promote early ovarian cancer metastasis through fibronectin secretion. J Clin Invest. 2014;124(10):4614–28.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Cox TR, Bird D, Baker A-M, Barker HE, Ho MWY, Lang G, et al. LOX-mediated collagen crosslinking is responsible for fibrosis-enhanced metastasis. Cancer Res. 2013;73(6):1721–32.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

The MALDI-TOF MS and LC-MS analysis of FUD, mFUD, PEG-FUD, and PEG-mFUD was facilitated by Ian Miller, Molly Pellitteri Hahn, and Cameron Scarlett at the School of Pharmacy’s Analytical Instrumentation Center. We are grateful for the financial support of the University of Wisconsin-Madison School of Pharmacy and the National Institutes of Health Grant R01AI101157 to the Kwon lab and the National Eye Institute Grants EY017006 and EY0020490 (Peters lab), a Core grant to the Department of Ophthalmology and Visual Sciences P30EY016665 which provides support to the Peters lab.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Glen S. Kwon.

Electronic supplementary material

ESM 1

FPLC ion exchange chromatogram showing purification of the FUD and mFUD peptides. An anionic exchanger combined with a mobile phase gradient of 20 mM Tris A side and 1 M NaCl B side were used to elute and fractionate the peptides. (JPG 2018 kb)

ESM 2

FPLC ion exchange chromatogram showing isolation by fractionation of the 20 kDa PEG-FUD and 20 kDa PEG-mFUD constructs. An anionic exchanger combined with a mobile phase gradient of 20 mM Tris A side and 1 M NaCl B side were used to elute the peptide and separate it from unreacted FUD, PEG, and diPEGylated species. (JPG 2389 kb)

ESM 3

Reversed Phase High Performance Liquid Chromatography (RP-HPLC) chromatograph comparing retention times of FUD to mFUD and their respective PEGylates. The analysis was made using a C8 column combined with an A side H2O and B side acetonitrile mobile phase elution gradient. (JPG 2457 kb)

ESM 4

MALDI-TOF MS spectrum verifying the molecular weight of the 10 kDa PEG-FUD construct. A 6 kDa FUD reacted with a single 11.1 kDa nominal MW PEG yielded 16.9 kDa PEG-FUD. The analysis was made using α-cyano-4-hydroxycinnamic acid matrix. (JPG 2075 kb)

ESM 5

MALDI-TOF MS spectrum verifying the molecular weight of the 40 kDa PEG-FUD construct. A 6 kDa FUD reacted with a single 43.6 kDa nominal MW PEG yielded 49.6 kDa PEG-FUD. The analysis was made using α-cyano-4-hydroxycinnamic acid matrix. (JPG 2075 kb)

ESM 6

MALDI-TOF spectrum verifying the molecular weight of the 20 kDa PEG-mFUD construct. A 6 kDa mFUD reacted with a single 21.4 kDa nominal MW PEG yielded approximately 27.4 kDa PEG-mFUD. The analysis was made using α-cyano-4-hydroxycinnamic acid matrix. (JPG 1794 kb)

ESM 7

Determination of binding affinity (Kd) and other thermodynamic parameters using Isothermal Titration Calorimetry (ITC). All experiments were performed using pH 7.4 PBS, 25°C chamber conditions, and human plasma FN. A) 10 kDa PEG-FUD into FN and B) 40 kDa PEG-FUD into FN experiment sample isotherm and thermograph. Each experiment was repeated in triplicates. (JPG 6882 kb)

ESM 8

Matrix Assembly in vitro Assay (MAA) demonstrating inhibitory potency of FUD and 10 kDa, 20 kDa and 40 kDa PEG-FUD conjugates, and the 20 kDa PEG-mFUD control peptide. Human foreskin fibroblasts (AH1F) are grown in the presence of exogenous Alexa 488-labeled human plasma FN and in the presence or absence of an inhibitor. Results show parity of inhibitory potency between FUD and PEG-FUD conjugates. Extraction of IC50 values yielded A) 13 nM and 17 nM for FUD and 10 kDa PEG-FUD, respectively and B) 19 nM and 20 nM for FUD and 40 kDa PEG-FUD, respectively. For each data point, n = 4. (JPG 5221 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zbyszynski, P., Tomasini-Johansson, B.R., Peters, D.M. et al. Characterization of the PEGylated Functional Upstream Domain Peptide (PEG-FUD): a Potent Fibronectin Assembly Inhibitor with Potential as an Anti-Fibrotic Therapeutic. Pharm Res 35, 126 (2018). https://doi.org/10.1007/s11095-018-2412-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11095-018-2412-7

Keywords

Navigation