Skip to main content

Advertisement

Log in

Assessment of Forces in Intradermal Injection Devices: Hydrodynamic Versus Human Factors

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

The force that has to be exerted on the plunger for administering a given amount of fluid in a given time, has an important influence on comfort for the subject and usability for the administrator in intradermal drug delivery. The purpose of this study is to model those forces that are subject-independent, by linking needle and syringe geometry to the force required for ejecting a given fluid at a given ejection rate.

Material and Methods

We extend the well-known Hagen-Poiseuille formula to predict pressure drop induced by a fluid passing through a cylindrical body. The model investigates the relation between the pressure drop in needles and the theoretic Hagen-Poiseuille prediction and is validated in fifteen needles from 26G up to 33G suited for intradermal drug delivery. We also provide a method to assess forces exerted by operators in real world conditions.

Results

The model is highly linear in each individual needle with R-square values ranging from 75% up to 99.9%. Ten out of fifteen needles exhibit R-square values above 99%. A proof-of-concept for force assessment is provided by logging forces in operators in real life conditions.

Conclusions

The force assessment method and the model can be used to pinpoint needle geometry for intradermal injection devices, tuning comfort for subjects and usability for operators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ID:

Intradermal

IM:

Intramuscularly

SC:

Subcutaneously

References

  1. Slominski A, Wortsman J, Paus R, Elias PM, Tobin DJ, Feingold KR. Skin as an endocrine organ: implications for its function. Drug Discov Today Dis Mech. 2008;5(2):e137-e44.

    Article  Google Scholar 

  2. Lambert PH, Laurent PE. Intradermal vaccine delivery: will new delivery systems transform vaccine administration? Vaccine. 2008;26(26):3197–208.

    Article  PubMed  CAS  Google Scholar 

  3. McGrath J, Uitto J. Anatomy and organization of human skin. Rook’s textbook of dermatology, Eighth Edition. 2010:1–53.

  4. Lai-Cheong JE, McGrath JA. Structure and function of skin, hair and nails. Medicine. 2009;37(5):223–6.

    Article  Google Scholar 

  5. Young F, Marra F. A systematic review of intradermal influenza vaccines. Vaccine. 2011;29(48):8788–801.

    Article  PubMed  CAS  Google Scholar 

  6. Pileggi C, Lotito F, Bianco A, Nobile CG, Pavia M. Immunogenicity and safety of intradermal influenza vaccine in immunocompromized patients: a meta-analysis of randomized controlled trials. BMC Infect Dis. 2015;15:427.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Guy R. Transdermal science and technology-an update. Drug Deliv Syst. 2007;22(4):442–9.

    Article  CAS  Google Scholar 

  8. Norman JJ, Brown MR, Raviele NA, Prausnitz MR, Felner EI. Faster pharmacokinetics and increased patient acceptance of intradermal insulin delivery using a single hollow microneedle in children and adolescents with type 1 diabetes. Pediatr Diabetes. 2013;14(6):459–65.

    Article  PubMed  CAS  Google Scholar 

  9. Hickling J, Jones R. Intradermal delivery of vaccines: a review of the literature and the potential for development for use in low-and middle-income countries. Program for Appropriate Technology in Health (PATH), Ferney Voltaire; 2009.

  10. Tarnow K, King N. Intradermal injections: traditional bevel up versus bevel down. Appl Nurs Res. 2004;17(4):275–82.

    Article  PubMed  Google Scholar 

  11. Flynn PM, Shenep JL, Mao L, Crawford R, Williams BF, Williams BG. Influence of needle gauge in Mantoux skin testing. CHEST J. 1994;106(5):1463–5.

    Article  CAS  Google Scholar 

  12. Kim YC, Jarrahian C, Zehrung D, Mitragotri S, Prausnitz MR. Delivery systems for intradermal vaccination. Curr Top Microbiol Immunol. 2012;351:77–112.

    PubMed  PubMed Central  CAS  Google Scholar 

  13. Larrañeta E, Lutton REM, Woolfson AD, Donnelly RF. Microneedle arrays as transdermal and intradermal drug delivery systems: materials science, manufacture and commercial development. Mater Sci Eng R Rep. 2016;104:1–32.

    Article  Google Scholar 

  14. Lhernould MS, Deleers M, Delchambre A. Hollow polymer microneedles array resistance and insertion tests. Int J Pharm. 2015;480(1–2):152–7.

    Article  PubMed  CAS  Google Scholar 

  15. Van Damme P, Oosterhuis-Kafeja F, Van der Wielen M, Almagor Y, Sharon O, Levin Y. Safety and efficacy of a novel microneedle device for dose sparing intradermal influenza vaccination in healthy adults. Vaccine. 2009;27(3):454–9.

    Article  PubMed  Google Scholar 

  16. Hickling JK, Jones KR, Friede M, Zehrung D, Chen D, Kristensen D. Intradermal delivery of vaccines: potential benefits and current challenges. Bull World Health Organ. 2011;89(3):221–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Norman JJ, Gupta J, Patel SR, Park S, Jarrahian C, Zehrung D, et al. Reliability and accuracy of intradermal injection by Mantoux technique, hypodermic needle adapter, and hollow microneedle in pigs. Drug Deliv Transl Res. 2014;4(2):126–30.

    Article  PubMed  Google Scholar 

  18. Tsals I. Usability evaluation of intradermal adapters (IDA). Vaccine. 2017;35(14):1797–1801.

  19. Vescovo P, Rettby N, Ramaniraka N, Liberman J, Hart K, Cachemaille A, et al. Safety, tolerability and efficacy of intradermal rabies immunization with DebioJect™. Vaccine. 2017;35(14):1782–8.

    Article  PubMed  CAS  Google Scholar 

  20. Laurent PE, Bonnet S, Alchas P, Regolini P, Mikszta JA, Pettis R, et al. Evaluation of the clinical performance of a new intradermal vaccine administration technique and associated delivery system. Vaccine. 2007;25(52):8833–42.

    Article  PubMed  CAS  Google Scholar 

  21. Kis EE, Winter G, Myschik J. Devices for intradermal vaccination. Vaccine. 2012;30(3):523–38.

    Article  PubMed  CAS  Google Scholar 

  22. Terumo. Anual report 2016. Feature article: innovating to create value through new perspectives and synthesis. Terumo Corporation; 2016.

  23. Van Mulder TJ, Verwulgen S, Beyers KC, Scheelen L, Elseviers MM, Van Damme P, et al. Assessment of acceptability and usability of new delivery prototype device for intradermal vaccination in healthy subjects. Hum Vaccin Immunother. 2014;10(12):3746–53.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Pietzsch JB, Shluzas LA, Paté-Cornell ME, Yock PG, Linehan JH. Stage-gate process for the development of medical devices. J Med Devices. 2009;3(2):021004.

    Article  Google Scholar 

  25. Cilurzo F, Selmin F, Minghetti P, Adami M, Bertoni E, Lauria S, et al. Injectability evaluation: an open issue. AAPS PharmSciTech. 2011;12(2):604–9.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Allmendinger A, Mueller R, Schwarb E, Chipperfield M, Huwyler J, Mahler HC, et al. Measuring tissue back-pressure--in vivo injection forces during subcutaneous injection. Pharm Res. 2015;32(7):2229–40.

    Article  PubMed  CAS  Google Scholar 

  27. Burckbuchler V, Mekhloufi G, Giteau AP, Grossiord JL, Huille S, Agnely F. Rheological and syringeability properties of highly concentrated human polyclonal immunoglobulin solutions. Eur J Pharm Biopharm Off J Arbeitsgemeinschaft Pharm Verfahrenstechnik. 2010;76(3):351–6.

    Article  CAS  Google Scholar 

  28. Adler M. INJECTABLES-challenges in the development of pre-filled syringes for biologics from a formulation Scientist's point of view. Am Pharm Rev. 2012;15(1):96.

    CAS  Google Scholar 

  29. Gupta J, Park SS, Bondy B, Felner EI, Prausnitz MR. Infusion pressure and pain during microneedle injection into skin of human subjects. Biomaterials. 2011;32(28):6823–31.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Fry A. Injecting highly viscous drugs. Pharm Technol. 2014;38(11).

  31. Bonds RS, Asawa A, Ghazi AI. Misuse of medical devices: a persistent problem in self-management of asthma and allergic disease. Ann Allergy Asthma Immunol. 2015;114(1):74–6.e2.

    Article  PubMed  Google Scholar 

  32. Leoni G, Lyness A, Ginty P, Schutte R, Pillai G, Sharma G, et al. Preclinical development of an automated injection device for intradermal delivery of a cell-based therapy. Drug Deliv Transl Res. 2017;7(5):695–708.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Sadri R, Floryan J. Accurate evaluation of the loss coefficient and the entrance length of the inlet region of a channel. J Fluids Eng. 2002;124(3):685–93.

    Article  Google Scholar 

  34. Brown GO. The history of the Darcy-Weisbach equation for pipe flow resistance. Environmental and Water Resources History 2003. p. 34–43.

  35. Sutera SP, Skalak R. The history of Poiseuille’s law. Annu Rev Fluid Mech. 1993;25(1):1–20.

    Article  Google Scholar 

  36. RGd S, Figueiredo JR. Laminar elliptic flow in the entrance region of tubes. J Braz Soc Mech Sci Eng. 2007;29(3):233–9.

    Google Scholar 

  37. Idelchik I, Steinberg M, Malyavskaya G, Martynenko O. Handbook of hydraulic resistance. Boca Raton: CRC Press; 1994.

  38. Simpson TW, Maier JR, Mistree F. Product platform design: method and application. Res Eng Des. 2001;13(1):2–22.

    Article  Google Scholar 

  39. Van Mulder T, de Koeijer M, Theeten H, Willems D, Van Damme P, Demolder M, et al. High frequency ultrasound to assess skin thickness in healthy adults. Vaccine. 2017;35(14):1810–5.

    Article  PubMed  Google Scholar 

  40. Salgame P, Geadas C, Collins L, Jones-Lopez E, Ellner JJ. Latent tuberculosis infection--revisiting and revising concepts. Tuberculosis. 2015;95(4):373–84.

    Article  PubMed  Google Scholar 

  41. Yamada S, Yamada Y, Tsukamoto Y, Tabata M, Irie J. A comparison study of patient ratings and safety of 32-and 34-gauge insulin pen needles. Diabetol Int. 2016;7(3):259–65.

    Article  Google Scholar 

  42. Li M, Tian X, Schreyer DJ, Chen X. Effect of needle geometry on flow rate and cell damage in the dispensing-based biofabrication process. Biotechnol Prog. 2011;27(6):1777–84.

    Article  PubMed  CAS  Google Scholar 

  43. Martanto W, Baisch SM, Costner EA, Prausnitz MR, Smith MK. Fluid dynamics in conically tapered microneedles. AICHE J. 2005;51(6):1599–607.

    Article  CAS  Google Scholar 

Download references

Acknowledgments AND DISCLOSURES

Authors KB, VVK and SV are co-founders of Novosanis. The other authors report no potential conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stijn Verwulgen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verwulgen, S., Beyers, K., Van Mulder, T. et al. Assessment of Forces in Intradermal Injection Devices: Hydrodynamic Versus Human Factors. Pharm Res 35, 120 (2018). https://doi.org/10.1007/s11095-018-2397-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11095-018-2397-2

KEY WORDS

Navigation