Skip to main content

Advertisement

Log in

Carbon Dioxide-Generating PLG Nanoparticles for Controlled Anti-Cancer Drug Delivery

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Poly(D,L-lactide-co-glycolide) (PLG) nanoparticles containing doxorubicin and mineralized calcium carbonate were fabricated and their anti-tumor efficacy was tested using a neuroblastoma-bearing mouse model.

Methods

PLG nanoparticles were prepared by a double emulsion (water-in-oil-in-water; W/O/W) method. Calcium carbonate was mineralized within the PLG nanoparticles during the emulsion process. Rabies virus glycoprotein (RVG) peptide was chemically introduced to the surface of the PLG nanoparticles as a targeting moiety against neuroblastoma. The cytotoxicity and cellular uptake characteristics of these nanoparticles were investigated in vitro. Moreover, their therapeutic efficacy was evaluated using a tumor-bearing mouse model.

Results

Mineralized calcium carbonate in PLG nanoparticles was ionized at acidic pH and generated carbon dioxide gas, which resultantly accelerated the release of doxorubicin from the nanoparticles. RVG peptide-modified, gas-generating PLG nanoparticles showed a significantly enhanced targeting ability to neuroblastoma and an increased therapeutic efficacy in vivo as compared with free doxorubicin.

Conclusions

Targeting ligand-modified polymer nanoparticles containing both anti-cancer drug and mineralized calcium carbonate could be useful for cancer treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

DOX:

Doxorubicin

EDC:

1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide

mCNP:

PLG nanoparticle containing mineralized calcium carbonate

MES:

2-(N-Morpholino)ethanesulfonic acid

MTT:

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide

N2a:

Neuro-2a

NHS:

N-Hydroxysulfosuccinimide

PBS:

Phosphate-buffered saline

PLG:

Poly(D,L-lactide-co-glycolide)

PNP:

Non-gas-generating PLG nanoparticle

PVA:

Poly(vinyl alcohol)

RVG:

Rabies virus glycoprotein

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin. 2016;66(1):7–30.

    Article  PubMed  Google Scholar 

  2. Parveen S, Sahoo SK. Polymeric nanoparticles for cancer therapy. J Drug Target. 2008;16(2):108–23.

    Article  CAS  PubMed  Google Scholar 

  3. Cho K, Wang X, Nie S, Shin DM. Therapeutic nanoparticles for drug delivery in cancer. Clinical Cancer Res. 2008;14(5):1310–6.

    Article  CAS  Google Scholar 

  4. Sawant RM, Hurley J, Salmaso S, Kale A, Tolcheva E, Levchenko T, et al. “SMART” drug delivery systems: double-targeted pH-responsive pharmaceutical Nanocarriers. Bioconjug Chem. 2006;17(4):943–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Schmaljohann D. Thermo-and pH-responsive polymers in drug delivery. Adv Drug Deliv Rev. 2006;58(15):1655–70.

    Article  CAS  PubMed  Google Scholar 

  6. Gatenby RA, Gillies RJ. Why do cancers have high aerobic glycolysis? Nature Rev Cancer. 2004;4(11):891–9.

    Article  CAS  Google Scholar 

  7. Folkman J. Tumor angiogenesis: therapeutic implications. New Eng J Med. 1971;285(21):1182–6.

    Article  CAS  PubMed  Google Scholar 

  8. Danhier F, Feron O, Préat V. To exploit the tumor microenvironment: passive and active tumor targeting of Nanocarriers for anti-cancer drug delivery. J Control Release. 2010;148(2):135–46.

    Article  CAS  PubMed  Google Scholar 

  9. Lee ES, Oh KT, Kim D, Youn YS, Bae YH. Tumor pH-responsive flower-like micelles of poly(L-lactic acid)-b-poly(ethylene glycol)-b-poly(L-histidine). J Control Release. 2007;123(1):19–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Liu J, Huang Y, Kumar A, Tan A, Jin S, Mozhi A, et al. pH-sensitive Nano-Systems for drug delivery in cancer therapy. Biotechnol Adv. 2014;32(4):693–710.

    Article  CAS  PubMed  Google Scholar 

  11. Mundargi RC, Babu VR, Rangaswamy V, Patel P, Aminabhavi TM. Nano/micro Technologies for Delivering Macromolecular Therapeutics Using Poly(D, L-Lactide-co-Glycolide) and its derivatives. J Control Release. 2008;125(3):193–209.

    Article  CAS  PubMed  Google Scholar 

  12. Nair LS, Laurencin CT. Biodegradable polymers as biomaterials. Prog Polym Sci. 2007;32(8):762–98.

    Article  CAS  Google Scholar 

  13. Bala I, Hariharan S, Kumar MR. PLGA nanoparticles in drug delivery: the state of the art. Crit Rev Ther Drug Carrier Sys. 2004;21(5):387–422.

    Article  CAS  Google Scholar 

  14. Kumar P, Wu H, McBride JL, Jung KE, Kim MH, Davidson BL, et al. Transvascular delivery of small interfering RNA to the central nervous system. Nature. 2007;448(7149):39–43.

    Article  CAS  PubMed  Google Scholar 

  15. Son S, Jang J, Youn H, Lee S, Lee D, Lee YS, et al. Brain-targeted rabies virus glycoprotein-disulfide linked PEI Nanocarrier for delivery of neurogenic Microrna. Biomaterials. 2011;32(21):4968–75.

    Article  PubMed  Google Scholar 

  16. Choi B, Park HJ, Hwang S, Park J. Preparation of alginate beads for floating drug delivery system: effects of CO2 gas-forming agents. Int J Pharm. 2002;239(1):81–91.

    Article  CAS  PubMed  Google Scholar 

  17. Lee J, Min HS, You DG, Kim K, Kwon IC, Rhim T, et al. Theranostic gas-generating nanoparticles for targeted ultrasound imaging and treatment of neuroblastoma. J Controlled Release. 2016;223:197–206.

    Article  CAS  Google Scholar 

  18. Pakulska MM, Donaghue IE, Obermeyer JM, Tuladhar A, McLaughlin CK, Shendruk TN, et al. Encapsulation-free controlled release: electrostatic adsorption eliminates the need for protein encapsulation in PLGA nanoparticles. Sci Adv. 2016;2(5):e1600519.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Min KH, Min HS, Lee HJ, Park DJ, Yhee JY, Kim K, et al. pH-controlled gas-generating mineralized nanoparticles: a Theranostic agent for ultrasound imaging and therapy of cancers. ACS Nano. 2015;9(1):134–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hirn S, Semmler-Behnke M, Schleh C, Wenk A, Lipka J, Schäffler M, et al. Particle size-dependent and surface charge-dependent biodistribution of gold nanoparticles after intravenous administration. Eur J Pharm Biopharm. 2011;77(3):407–16.

    Article  CAS  PubMed  Google Scholar 

  21. Davis ME, Shin DM. Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Discov. 2008;7(9):771–82.

    Article  CAS  PubMed  Google Scholar 

  22. Choi KY, Min KH, Na JH, Choi K, Kim K, Park JH, et al. Self-assembled hyaluronic acid nanoparticles as a potential drug carrier for cancer therapy: synthesis, characterization, and in vivo biodistribution. J Mater Chem. 2009;19(24):4102–7.

    Article  CAS  Google Scholar 

  23. Naka K, Tanaka Y, Chujo Y. Effect of anionic starburst dendrimers on the crystallization of CaCO3 in aqueous solution: size control of spherical Vaterite particles. Langmuir. 2002;18(9):3655–8.

    Article  CAS  Google Scholar 

  24. Xiao H, Wang L. Effects of X-shaped reduction-sensitive amphiphilic block copolymer on drug delivery. Int J Nanomedicine. 2015;10:5309–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cho HJ, Yoon IS, Yoon HY, Koo H, Jin YJ, Ko SH, et al. Polyethylene glycol-conjugated hyaluronic acid-ceramide self-assembled nanoparticles for targeted delivery of doxorubicin. Biomaterials. 2012;33(4):1190–200.

    Article  CAS  PubMed  Google Scholar 

  26. Ma MG, Dong YY, Fu LH, Li SM, Sun RC. Cellulose/CaCO3 nanocomposites: microwave ionic liquid synthesis, characterization, and biological activity. Carbohydr Polym. 2013;92(2):1669–76.

    Article  CAS  PubMed  Google Scholar 

  27. Rim HP, Min KH, Lee HJ, Jeong SY, Lee SC. pH-tunable calcium phosphate covered mesoporous silica Nanocontainers for intracellular controlled release of guest drugs. Angew Chem Int Ed. 2011;50(38):8853–7.

    Article  CAS  Google Scholar 

  28. Mohan P, Rapoport N. Doxorubicin as a molecular Nanotheranostic agent: effect of doxorubicin encapsulation in micelles or Nanoemulsions on the ultrasound-mediated intracellular delivery and nuclear trafficking. Mol Pharm. 2010;7(6):1959–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lee C, Hwang HS, Lee S, Kim B, Kim JO, Oh KT, et al. Rabies virus-inspired silica-coated gold Nanorods as a Photothermal therapeutic platform for treating brain tumors. Adv Mater. 2017;29(13):1605563.

    Article  Google Scholar 

  30. Kang E, Min HS, Lee J, Han MH, Ahn HJ, Yoon IC, et al. Nanobubbles from gas-generating polymeric nanoparticles: ultrasound imaging of living subjects. Angew Chem Int Ed. 2010;49(3):524–8.

    Article  CAS  Google Scholar 

  31. Zhou Y, Wang Z, Chen Y, Shen H, Luo Z, Li A, et al. Microbubbles from gas-generating Perfluorohexane Nanoemulsions for targeted temperature-sensitive ultrasonography and synergistic HIFU ablation of tumors. Adv Mater. 2013;25(30):4123–30.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments and Disclosures

This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Ministry of Science, ICT & Future Planning (MSIP) (NRF-2016R1A2A2A10005086). The authors have declared no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuen Yong Lee.

Electronic supplementary material

ESM 1

(DOCX 4730 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jang, H.J., Jeong, E.J. & Lee, K.Y. Carbon Dioxide-Generating PLG Nanoparticles for Controlled Anti-Cancer Drug Delivery. Pharm Res 35, 59 (2018). https://doi.org/10.1007/s11095-018-2359-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11095-018-2359-8

Key Words

Navigation