Skip to main content

Advertisement

Log in

Targeting Suppressive Oligonucleotide to Lymph Nodes Inhibits Toll-like Receptor-9-Mediated Activation of Adaptive Immunity

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

This paper aims to investigate the immunoinhibitory properties of a lymph nodes-targeting suppressive oligonucleotide (ODN) for the potential treatment of autoimmune diseases or chronic inflammation.

Methods

Synthetic suppressive ODN engineered with an albumin-binding diacyl lipid at the 5′-terminal (lipo-ODN) was synthesized. In vitro and in vivo experiments were designed to compare the immune suppressive properties of lipo-ODN and unmodified ODN. Cellular uptake and distribution, inhibition of Toll-like receptor (TLR) activation, lymph nodes (LN) draining, and the suppression of antigen-specific immune responses in an ovalbumin protein model was investigated.

Results

Compared to unmodified ODN, lipid functionalized suppressive ODN demonstrated enhanced cellular uptake and TLR-9 specific immune suppression in TLR reporter cells. Additionally, injection of a low dose of lipid-modified suppressive ODN, but not the unconjugated ODN, accumulated in the draining LNs and exhibited potent inhibition of antigen-specific CD8+ T cell and B cell responses in vivo.

Conclusions

Targeting suppressive ODN to antigen presenting cells (APCs) in the local LNs is an effective approach to amplify the immune modulation mediated by ODN containing repetitive TTAGGG motif. This approach might be broadly applicable to target molecular adjuvants to the key immune cells in the LNs draining from disease site, providing a simple strategy to improve the efficacy of many molecular immune modulators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

BSA:

Bovine serum albumin

CpG ODN:

CpG oligodeoxynucleotides

DAPI:

4′,6-diamidino-2-phenylindole

DC 2.4:

Dendritic cell 2.4

ELISA:

Enzyme-linked immunosorbent assay

FAM:

Fluorescein amidite

IgG:

Immunoglobulin G

LN:

Lymph node

LPS:

Lipopolysaccharide

MHC:

Major histocompatibility complex

OVA:

Ovalbumin

PBS:

Phosphate buffered saline

SEAP:

Secreted embryonic alkaline phosphatase

Sup-ODN:

Suppressive oligodeoxynucleotides

TLR-9:

Toll-like receptor 9

References

  1. Akira S, Takeda K, Kaisho T. Toll-like receptors: critical proteins linking innate and acquired immunity. Nat Immunol. 2001;2(8):675–80.

    Article  CAS  PubMed  Google Scholar 

  2. Takeda K, Kaisho T, Akira S. Toll-like receptors. Annu Rev Immunol. 2003;21(1):335–76.

    Article  CAS  PubMed  Google Scholar 

  3. Barrat FJ, Coffman RL. Development of TLR inhibitors for the treatment of autoimmune diseases. Immunol Rev. 2008;223(1):271–83.

    Article  CAS  PubMed  Google Scholar 

  4. Capolunghi F, Rosado MM, Cascioli S, Girolami E, Bordasco S, Vivarelli M, et al. Pharmacological inhibition of TLR9 activation blocks autoantibody production in human B cells from SLE patients. Rheumatology. 2010;49(12):2281–9.

    Article  CAS  PubMed  Google Scholar 

  5. Mills KH. TLR-dependent T cell activation in autoimmunity. Nat Rev Immunol. 2011;11(12):807–22.

    Article  CAS  PubMed  Google Scholar 

  6. Barrat FJ, Meeker T, Gregorio J, Chan JH, Uematsu S, Akira S, et al. Nucleic acids of mammalian origin can act as endogenous ligands for toll-like receptors and may promote systemic lupus erythematosus. J Exp Med. 2005;202(8):1131–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Firestein GS. Evolving concepts of rheumatoid arthritis. Nature. 2003;423(6937):356–61.

    Article  CAS  PubMed  Google Scholar 

  8. Huang Q-Q, Pope RM. The role of toll-like receptors in rheumatoid arthritis. Curr Rheumatol Rep. 2009;11(5):357–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Marshak-Rothstein A. Toll-like receptors in systemic autoimmune disease. Nat Rev Immunol. 2006;6(11):823–35.

    Article  CAS  PubMed  Google Scholar 

  10. Guiducci C, Tripodo C, Gong M, Sangaletti S, Colombo MP, Coffman RL, et al. Autoimmune skin inflammation is dependent on plasmacytoid dendritic cell activation by nucleic acids via TLR7 and TLR9. J Exp Med. 2010;207(13):2931–42. https://doi.org/10.1084/jem.20101048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gursel I, Gursel M, Yamada H, Ishii KJ, Takeshita F, Klinman DM. Repetitive elements in mammalian telomeres suppress bacterial DNA-induced immune activation. J Immunol. 2003;171(3):1393–400.

    Article  CAS  PubMed  Google Scholar 

  12. Bayik D, Gursel I, Klinman DM. Structure, mechanism and therapeutic utility of immunosuppressive oligonucleotides. Pharmacol Res. 2016;105:216–25.

    Article  CAS  PubMed  Google Scholar 

  13. Tostanoski LH, Chiu YC, Andorko JI, Guo M, Zeng X, Zhang P, et al. Design of polyelectrolyte multilayers to promote immunological tolerance. ACS Nano. 2016;10:9334–45.

    Article  CAS  Google Scholar 

  14. Shirota H, Gursel M, Klinman DM. Suppressive oligodeoxynucleotides inhibit Th1 differentiation by blocking IFN-γ-and IL-12-mediated signaling. J Immunol. 2004;173(8):5002–7.

    Article  CAS  PubMed  Google Scholar 

  15. Flierl U, Nero TL, Lim B, Arthur JF, Yao Y, Jung SM, et al. Phosphorothioate backbone modifications of nucleotide-based drugs are potent platelet activators. J Exp Med. 2015;212(2):129–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Iannitti T, Cesar Morales-Medina J, Palmieri B. Phosphorothioate oligonucleotides: effectiveness and toxicity. Curr Drug Targets. 2014;15(7):663–73.

    Article  CAS  PubMed  Google Scholar 

  17. Benaglio F, Vitolo B, Scarabelli M, Binda E, Bugatti S, Caporali R, et al. The draining lymph node in rheumatoid arthritis: current concepts and research perspectives. Biomed Res Int. 2015;2015:420251.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Trevaskis NL, Kaminskas LM, Porter CJ. From sewer to saviour [mdash] targeting the lymphatic system to promote drug exposure and activity. Nat Rev Drug Discov. 2015;14(11):781–803.

    Article  CAS  PubMed  Google Scholar 

  19. Liu H, Moynihan KD, Zheng Y, Szeto GL, Li AV, Huang B, et al. Structure-based programming of lymph-node targeting in molecular vaccines. Nature. 2014;507(7493):519–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Liu H, Kwong B, Irvine DJ. Membrane anchored immunostimulatory oligonucleotides for in vivo cell modification and localized immunotherapy. Angew Chem Int Ed Eng. 2011;50(31):7052–5.

    Article  CAS  Google Scholar 

  21. Krieg AM, Yi A-K, Matson S, Waldschmidt TJ, Bishop GA, Teasdale R, et al. CpG motifs in bacterial DNA trigger direct B-cell activation. Nature. 1995;374(6522):546–9.

    Article  CAS  PubMed  Google Scholar 

  22. Raouane M, Desmaële D, Urbinati G, Massaad-Massade L, Couvreur P. Lipid conjugated oligonucleotides: a useful strategy for delivery. Bioconjug Chem. 2012;23(6):1091–104.

    Article  CAS  PubMed  Google Scholar 

  23. Yu C, An M, Li M, Liu H. Immunostimulatory properties of lipid modified CpG Oligonucleotides. Mol Pharm. 2017;14(8):2815–23.

    Article  CAS  PubMed  Google Scholar 

  24. Kandimalla ER, Yu D, Zhao Q, Agrawal S. Effect of chemical modifications of cytosine and guanine in a CpG-motif of oligonucleotides: structure–immunostimulatory activity relationships. Bioorg Med Chem. 2001;9(3):807–13.

    Article  CAS  PubMed  Google Scholar 

  25. Klinman DM, Tross D, Klaschik S, Shirota H, Sato T. Therapeutic applications and mechanisms underlying the activity of immunosuppressive oligonucleotides. Ann N Y Acad Sci. 2009;1175:80–8.

    Article  CAS  PubMed  Google Scholar 

  26. Lenert PS. Classification, mechanisms of action, and therapeutic applications of inhibitory oligonucleotides for toll-like receptors (TLR) 7 and 9. Mediat Inflamm. 2010;2010:986596.

    Article  Google Scholar 

  27. Liu H, Irvine DJ. Guiding principles in the design of molecular bioconjugates for vaccine applications. Bioconjug Chem. 2015;26(5):791–801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Faries MB, Bedrosian I, Reynolds C, Nguyen HQ, Alavi A, Czerniecki BJ. Active macromolecule uptake by lymph node antigen-presenting cells: a novel mechanism in determining sentinel lymph node status. Ann Surg Oncol. 2000;7(2):98–105.

    Article  CAS  PubMed  Google Scholar 

  29. Suarez-Farinas M, Arbeit R, Jiang W, Ortenzio FS, Sullivan T, Krueger JG. Suppression of molecular inflammatory pathways by toll-like receptor 7, 8, and 9 antagonists in a model of IL-23-induced skin inflammation. PLoS One. 2013;8(12):e84634.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Balak DM, van Doorn MB, Arbeit RD, Rijneveld R, Klaassen E, Sullivan T, et al. IMO-8400, a toll-like receptor 7, 8, and 9 antagonist, demonstrates clinical activity in a phase 2a, randomized, placebo-controlled trial in patients with moderate-to-severe plaque psoriasis. Clin Immunol (Orlando FL). 2017;174:63–72.

    Article  CAS  Google Scholar 

  31. Karbach J, Neumann A, Wahle C, Brand K, Gnjatic S, Jager E. Therapeutic administration of a synthetic CpG oligodeoxynucleotide triggers formation of anti-CpG antibodies. Cancer Res. 2012;72(17):4304–10.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haipeng Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, C., An, M., Jones, E. et al. Targeting Suppressive Oligonucleotide to Lymph Nodes Inhibits Toll-like Receptor-9-Mediated Activation of Adaptive Immunity. Pharm Res 35, 56 (2018). https://doi.org/10.1007/s11095-018-2344-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11095-018-2344-2

KEY WORDS

Navigation