Skip to main content

Advertisement

Log in

Novel Gemcitabine Conjugated Albumin Nanoparticles: a Potential Strategy to Enhance Drug Efficacy in Pancreatic Cancer Treatment

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

The present study reports a novel conjugate of gemcitabine (GEM) with bovine serum albumin (BSA) and thereof nanoparticles (GEM-BSA NPs) to potentiate the therapeutic efficacy by altering physicochemical properties, improving cellular uptake and stability of GEM.

Methods

The synthesized GEM-BSA conjugate was extensively characterized by NMR, FTIR, MALDI-TOF and elemental analysis. Conjugation mediated changes in structural conformation and physicochemical properties were analysed by fluorescence, Raman and CD spectroscopy, DSC and contact angle analysis. Further, BSA nanoparticles were developed from BSA-GEM conjugate and extensively evaluated against in-vitro pancreatic cancer cell lines to explore cellular uptake pathways and therapeutic efficacy.

Results

Various characterization techniques confirmed covalent conjugation of GEM with BSA. GEM-BSA conjugate was then transformed into NPs via high pressure homogenization technique with particle size 147.2 ± 7.3, PDI 0.16 ± 0.06 and ZP -19.2 ± 1.4. The morphological analysis by SEM and AFM revealed the formation of smooth surface spherical nanoparticles. Cellular uptake studies in MIA PaCa-2 (GEM sensitive) and PANC-1 (GEM resistant) pancreatic cell lines confirmed energy dependent clathrin internalization/endocytosis as a primary mechanism of NPs uptake. In-vitro cytotoxicity studies confirmed the hNTs independent transport of GEM in MIA PaCa-2 and PANC-1 cells. Moreover, DNA damage and annexin-V assay revealed significantly higher apoptosis level in case of cells treated with GEM-BSA NPs as compared to free GEM.

Conclusions

GEM-BSA NPs were found to potentiate the therapeutic efficacy by altering physicochemical properties, improving cellular uptake and stability of GEM and thus demonstrated promising therapeutic potential over free drug.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

6-CFDA:

6-carboxyfluorescein diacetate

8-OHdG:

8-hydroxyguanosine

AFM:

Atomic force microscopy

AnnCy3:

Annexin V-Cy3.18 conjugate

BSA:

Bovine serum albumin

C-6:

Coumain-6

CD:

Circular dichroism

CDA:

Cytidine deaminase

CLSM:

Confocal laser microscope

CNTs:

Human concentrative nucleoside transporters

dFdU:

2′,2′-difluorodeoxyuridine

DMEM:

Dulbecco’s Modified Eagle Medium

DMSO:

Dimethyl sulfoxide

DSC:

Differential scanning calorimetry

EDC:

1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide

EDTA:

Ethylene diamine tetra acetic acid

ENTs:

Human equilibrative nucleoside transporters

FBS:

Fetal bovine serum

FTIR:

Fourier transform infrared

GEM:

Gemcitabine

GEM-BSA NPs:

Gemcitabine-Bovine serum albumin nanoparticles

HBSS:

Hank’s Buffered Salt Solution

hNTs:

human nucleoside transporters NMR: Nuclear magnetic resonance

MALDI-TOF:

matrix assisted laser desorption ionization time of flight

MTT:

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide

NHS:

N-Hydroxysuccinimide

PDI:

Polydispersity index

PXRD:

Powder X-ray diffraction analysis

SDS-PAGE:

Sodium dodecyl sulfate polyacrylamide gel electrophoresis

SEM:

Scanning electron microsc opy

SPARC:

Secreted protein acid rich in cysteine

TGA:

Thermogravimetric analysis

TNBS:

2,4,6-trinitrobenzenesulfonic acid

REFERENCES

  1. von der Maase H, Hansen S, Roberts J, Dogliotti L, Oliver T, Moore M, et al. Gemcitabine and cisplatin versus methotrexate, vinblastine, doxorubicin, and cisplatin in advanced or metastatic bladder cancer: results of a large, randomized, multinational, multicenter, phase III study. J Clin Oncol. 2000;18(17):3068–77.

    Article  PubMed  Google Scholar 

  2. Moore MJ, Tannock IF, Ernst DS, Huan S, Murray N. Gemcitabine: a promising new agent in the treatment of advanced urothelial cancer. J Clin Oncol. 1997;15(12):3441–5.

    Article  CAS  PubMed  Google Scholar 

  3. Zisman A, Ng C-P, Pantuck AJ, Bonavida B, Belldegrun AS. Actinomycin D and gemcitabine synergistically sensitize androgen-independent prostate cancer cells to Apo2L/TRAIL-mediated apoptosis. J Immunother. 2001;24(6):459–71.

    Article  CAS  PubMed  Google Scholar 

  4. Bernardo G, Cuzzoni Q, Strada MR, Bernardo A, Brunetti G, Jedrychowska I, et al. First-line chemotherapy with vinorelbine, gemcitabine, and carboplatin in the treatment of brain metastases from non-small-cell lung cancer: a phase II study. Cancer Investig. 2002;20(3):293–302.

    Article  CAS  Google Scholar 

  5. Vrignaud S, Benoit J-P, Saulnier P. Strategies for the nanoencapsulation of hydrophilic molecules in polymer-based nanoparticles. Biomaterials. 2011;32(33):8593–604.

    Article  CAS  PubMed  Google Scholar 

  6. Das M, Jain R, Agrawal AK, Thanki K, Jain S. Macromolecular bipill of gemcitabine and methotrexate facilitates tumor-specific dual drug therapy with higher benefit-to-risk ratio. Bioconjug Chem. 2014;25(3):501–9.

    Article  CAS  PubMed  Google Scholar 

  7. Achiwa H, Oguri T, Sato S, Maeda H, Niimi T, Ueda R. Determinants of sensitivity and resistance to gemcitabine: The roles of human equilibrative nucleoside transporter 1 and deoxycytidine kinase in non-small cell lung cancer. Cancer Sci. 2004;95(9):753–7.

    Article  CAS  PubMed  Google Scholar 

  8. Duncan R. Polymer conjugates as anticancer nanomedicines. Nat Rev Cancer. 2006;6(9):688–701.

    Article  CAS  PubMed  Google Scholar 

  9. Duncan R, Gac-Breton S, Keane R, Musila R, Sat Y, Satchi R, et al. Polymer–drug conjugates, PDEPT and PELT: basic principles for design and transfer from the laboratory to clinic. J Control Release. 2001;74(1):135–46.

    Article  CAS  PubMed  Google Scholar 

  10. Khandare J, Minko T. Polymer–drug conjugates: progress in polymeric prodrugs. Prog Polym Sci. 2006;31(4):359–97.

    Article  CAS  Google Scholar 

  11. Pasut G, Canal F, Dalla Via L, Arpicco S, Veronese FM, Schiavon O. Antitumoral activity of PEG–gemcitabine prodrugs targeted by folic acid. J Control Release. 2008;127(3):239–48.

    Article  CAS  PubMed  Google Scholar 

  12. Neff T, Blau C. Forced expression of cytidine deaminase confers resistance to cytosine arabinoside and gemcitabine. Exp Hematol. 1996;24(11):1340–6.

    CAS  PubMed  Google Scholar 

  13. Sugiyama E, Kaniwa N, Kim S-R, Kikura-Hanajiri R, Hasegawa R, Maekawa K, et al. Pharmacokinetics of gemcitabine in Japanese cancer patients: the impact of a cytidine deaminase polymorphism. J Clin Oncol. 2006;25(1):32–42.

    Article  Google Scholar 

  14. Jain S, Jain R, Das M, Agrawal AK, Thanki K, Kushwah V. Combinatorial bio-conjugation of gemcitabine and curcumin enables dual drug delivery with synergistic anticancer efficacy and reduced toxicity. RSC Adv. 2014;4(55):29193–201.

    Article  CAS  Google Scholar 

  15. Chitkara D, Mittal A, Behrman SW, Kumar N, Mahato RI. Self-assembling, amphiphilic polymer–gemcitabine conjugate shows enhanced antitumor efficacy against human pancreatic adenocarcinoma. Bioconjug Chem. 2013;24(7):1161–73.

    Article  CAS  PubMed  Google Scholar 

  16. Neil I. Nab technology: A drug delivery platform utilising endothelial gp60 receptor-based transport and tumour-derived SPARC for targeting. Drug Deliv. Rep. 2017: 37–41.

  17. Stevis PE, Deecher DC, Suhadolnik L, Mallis LM, Frail DE. Differential effects of estradiol and estradiol-BSA conjugates. Endocrinology. 1999;140(11):5455–8.

    Article  CAS  PubMed  Google Scholar 

  18. Kim TH, Jiang HH, Youn YS, Park CW, Tak KK, Lee S, et al. Preparation and characterization of water-soluble albumin-bound curcumin nanoparticles with improved antitumor activity. Int J Pharm. 2011;403(1):285–91.

    Article  CAS  PubMed  Google Scholar 

  19. Hoang B, Ernsting MJ, Roy A, Murakami M, Undzys E, Li S-D. Docetaxel-carboxymethylcellulose nanoparticles target cells via a SPARC and albumin dependent mechanism. Biomaterials. 2015;59:66–76.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Lai SK, Hida K, Man ST, Chen C, Machamer C, Schroer TA, et al. Privileged delivery of polymer nanoparticles to the perinuclear region of live cells via a non-clathrin, non-degradative pathway. Biomaterials. 2007;28(18):2876–84.

    Article  CAS  PubMed  Google Scholar 

  21. Khare V, Kour S, Alam N, Dubey RD, Saneja A, Koul M, et al. Synthesis, characterization and mechanistic-insight into the anti-proliferative potential of PLGA-gemcitabine conjugate. Int J Pharm. 2014;470(1):51–62.

    Article  CAS  PubMed  Google Scholar 

  22. Dora CP, Trotta F, Kushwah V, Devasari N, Singh C, Suresh S, et al. Potential of erlotinib cyclodextrin nanosponge complex to enhance solubility, dissolution rate, in vitro cytotoxicity and oral bioavailability. Carbohydr Polym. 2016;137:339–49.

    Article  CAS  PubMed  Google Scholar 

  23. Jain S, Spandana G, Agrawal AK, Kushwah V, Thanki K. Enhanced antitumor efficacy and reduced toxicity of docetaxel loaded estradiol functionalized stealth polymeric nanoparticles. Mol Pharm. 2015;12(11):3871–84.

    Article  CAS  PubMed  Google Scholar 

  24. Serdjebi C, Seitz J-F, Ciccolini J, Duluc M, Norguet E, Fina F, et al. Rapid deaminator status is associated with poor clinical outcome in pancreatic cancer patients treated with a gemcitabine-based regimen. Pharmacogenomics. 2013;14(9):1047–51.

    Article  CAS  PubMed  Google Scholar 

  25. Chung W-G, Sandoval MA, Sloat BR, Lansakara-P DS, Cui Z. Stearoyl gemcitabine nanoparticles overcome resistance related to the over-expression of ribonucleotide reductase subunit M1. J Control Release. 2012;157(1):132–40.

    Article  CAS  PubMed  Google Scholar 

  26. Ghali M. Static quenching of bovine serum albumin conjugated with small size CdS nanocrystalline quantum dots. J Lumin. 2010;130(7):1254–7.

    Article  CAS  Google Scholar 

  27. Schnitzer J, Bravo J. High affinity binding, endocytosis, and degradation of conformationally modified albumins. Potential role of gp30 and gp18 as novel scavenger receptors. J Biol Chem. 1993;268(10):7562–70.

    CAS  PubMed  Google Scholar 

  28. Schnitzer J, Sung A, Horvat R, Bravo J. Preferential interaction of albumin-binding proteins, gp30 and gp18, with conformationally modified albumins. Presence in many cells and tissues with a possible role in catabolism. J Biol Chem. 1992;267(34):24544–53.

    CAS  PubMed  Google Scholar 

  29. Bolton BA, Scherer JR. Raman spectra and water absorption of bovine serum albumin. J Phys Chem. 1989;93(22):7635–40.

    Article  CAS  Google Scholar 

  30. Lin V, Koenig J. Raman studies of bovine serum albumin. Biopolymers. 1976;15(1):203–18.

    Article  CAS  PubMed  Google Scholar 

  31. Ahmad MW, Kim CR, Baeck JS, Chang Y, Kim TJ, Bae JE, et al. Bovine serum albumin (BSA) and cleaved-BSA conjugated ultrasmall Gd 2 O 3 nanoparticles: Synthesis, characterization, and application to MRI contrast agents. Colloids Surf A Physicochem Eng Asp. 2014;450:67–75.

    Article  CAS  Google Scholar 

  32. Zhao D, Zhao X, Zu Y, Li J, Zhang Y, Jiang R, et al. Preparation, characterization, and in vitro targeted delivery of folate-decorated paclitaxel-loaded bovine serum albumin nanoparticles. Int J Nanomedicine. 2010;5(1):669–77.

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Verbaan F, Oussoren C, Snel C, Crommelin D, Hennink W, Storm G. Steric stabilization of poly (2-(dimethylamino) ethyl methacrylate)-based polyplexes mediates prolonged circulation and tumor targeting in mice. J Gene Med. 2004;6(1):64–75.

    Article  CAS  PubMed  Google Scholar 

  34. He C, Hu Y, Yin L, Tang C, Yin C. Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials. 2010;31(13):3657–66.

    Article  CAS  PubMed  Google Scholar 

  35. Murata N, Los DA. Membrane fluidity and temperature perception. Plant Physiol. 1997;115(3):875.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Luo Y, Teng Z, Wang TT, Wang Q. Cellular uptake and transport of zein nanoparticles: effects of sodium caseinate. J Agric Food Chem. 2013;61(31):7621–9.

    Article  CAS  PubMed  Google Scholar 

  37. Singhal SS, Nagaprashantha L, Singhal P, Singhal S, Singhal J, Awasthi S, et al. RLIP76 inhibition: a promising developmental therapy for neuroblastoma. Pharm Res. 2017;34(8):1673–82.

  38. Kang JH, Jang WY, Ko YT. The effect of surface charges on the cellular uptake of liposomes investigated by live cell imaging. Pharm Res. 2017;34(4):704–17.

  39. Ma P, Yu H, Zhang X, Mu H, Chu Y, Ni L, et al. Increased Active Tumor Targeting by An αvβ3-Targeting and Cell-Penetrating Bifunctional Peptide-Mediated Dendrimer-Based Conjugate. Pharm Res. 2017;34(1):121–35.

    Article  CAS  PubMed  Google Scholar 

  40. Trickler W, Nagvekar A, Dash A. The in vitro sub-cellular localization and in vivo efficacy of novel chitosan/GMO nanostructures containing paclitaxel. Pharm Res. 2009;26(8):1963–73.

    Article  CAS  PubMed  Google Scholar 

  41. Chaudhari KR, Kumar A, Khandelwal VKM, Ukawala M, Manjappa AS, Mishra AK, et al. Bone metastasis targeting: a novel approach to reach bone using Zoledronate anchored PLGA nanoparticle as carrier system loaded with Docetaxel. J Control Release. 2012;158(3):470–8.

    Article  Google Scholar 

  42. Moysan E, Bastiat G, Benoit J-P. Gemcitabine versus modified gemcitabine: a review of several promising chemical modifications. Mol Pharm. 2012;10(2):430–44.

    Article  PubMed  Google Scholar 

  43. Borbath I, Verbrugghe L, Lai R, Gigot J-F, Humblet Y, Piessevaux H, et al. Human equilibrative nucleoside transporter 1 (hENT1) expression is a potential predictive tool for response to gemcitabine in patients with advanced cholangiocarcinoma. Eur J Cancer. 2012;48(7):990–6.

    Article  CAS  PubMed  Google Scholar 

  44. Xu H, Paxton JW, Wu Z. Development of Long-Circulating pH-Sensitive Liposomes to Circumvent Gemcitabine Resistance in Pancreatic Cancer Cells. Pharm Res. 2016;33(7):1628–37.

    Article  CAS  PubMed  Google Scholar 

  45. Huang P, Plunkett W. Fludarabine-and gemcitabine-induced apoptosis: incorporation of analogs into DNA is a critical event. Cancer Chemother Pharmacol. 1995;36(3):181–8.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

The authors are thankful to the Director NIPER, James Graham Brown Cancer Center (University of Louisville, KY, USA) and Strathclyde Institute of Pharmacy & Biomedical Sciences (University of Strathclyde, Glasgow, U.K.) for necessary infrastructure and facilities. Varun Kushwah is also grateful to the Council of Scientific and Industrial Research (CSIR), GOI, New Delhi, United States-India Educational Foundation, New Delhi and Commonwealth commission in the UK for providing research funding and fellowships. He was the 2016–17 Fulbright-Nehru Doctoral and 2015–16 Commonwealth Split-site PhD research fellow at University of Louisville, Louisville, KY and University of Strathclyde, Glasgow, U.K., respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanyog Jain.

Electronic supplementary material

ESM 1

(DOCX 992 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kushwah, V., Agrawal, A.K., Dora, C.P. et al. Novel Gemcitabine Conjugated Albumin Nanoparticles: a Potential Strategy to Enhance Drug Efficacy in Pancreatic Cancer Treatment. Pharm Res 34, 2295–2311 (2017). https://doi.org/10.1007/s11095-017-2238-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-017-2238-8

KEY WORDS

Navigation